

AFRL-IF-RS-TR-2003-239
Final Technical Report
October 2003

SOFTWARE SURVEYOR

Object Services and Consulting, Inc.

Sponsored by
Defense Advanced Research Projects Agency
DARPA Order No. K508

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S. Government.

AIR FORCE RESEARCH LABORATORY
INFORMATION DIRECTORATE

ROME RESEARCH SITE
ROME, NEW YORK

 This report has been reviewed by the Air Force Research Laboratory, Information
Directorate, Public Affairs Office (IFOIPA) and is releasable to the National Technical
Information Service (NTIS). At NTIS it will be releasable to the general public,
including foreign nations.

 AFRL-IF-RS-TR-2003-239 has been reviewed and is approved for publication.

 FOR THE DIRECTOR:

 JAMES A. COLLINS, Acting Chief
 Information Technology Division
 Information Directorate

/s/

APPROVED:

JAMES M. NAGY
Project Engineer

/s/

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 074-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302,
and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave blank)

2. REPORT DATE
Oct 03

3. REPORT TYPE AND DATES COVERED
Final Jul 00 – Jun 03

4. TITLE AND SUBTITLE

SOFTWARE SURVEYOR

6. AUTHOR(S)

David Wells and Paul Pazandak

5. FUNDING NUMBERS
C - F30602-00-C-0206
PE - 62702F
PR - DASA
TA - 00
WU - 07

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Object Services and Consulting, Inc.
6111 Baywood Avenue
Baltimore, MD 21209-3803

8. PERFORMING ORGANIZATION
 REPORT NUMBER

 N/A

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Defense Advanced Research Projects Agency AFRL/IFTB
3701 North Fairfax Drive 26 Electronic Pky
Arlington, VA 22203-1714 Rome, NY 13441-4505

10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

AFRL-IF-RS-TR-2003-239

11. SUPPLEMENTARY NOTES

AFRL Project Engineer: James M. Nagy, IFTB, 315-330-3173, nagyj@rl.af.mil

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 Words)

This contractual effort researched and developed technology that enables systems to meet high assurance, high
dependability, and high adaptability requirements. Object Services built gauges to collect, analyze and present
information about how deployed instances of distributed software actually interact. The non-intrusive gauges illustrate
the interaction patters, how far the effects of changes can propagate and whether an anticipated action is likely to be
safe and identify subtle differences between environments that might be the source of puzzling misbehavior. The
software gauges are suitable for use in profiling software applications constructed using JAVA.

15. NUMBER OF PAGES
106

14. SUBJECT TERMS
Software gauge, JAVA, DASADA, Adaptable software, configurable software, software
surveyor, surveyor, software probes 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

 i

TABLE OF CONTENTS
TABLE OF CONTENTS... i

1 Executive Summary .. 1

1.1 Administration .. 1

2 Problem Statement .. 2

2.1 Objective ... 2

3 Approach... 3

4 Technical Results .. 4

4.1 Probes.. 4

4.2 Gauges... 4

4.3 Event Infrastructure .. 5

4.4 Connecting to Architectural Models... 5

5 Demonstrations & Tech Transfer.. 6

6 Publications and Presentations.. 7

7 Lessons Learned.. 8

7.1 Big Picture & Local Depth are Both Essential ... 8

7.2 Early Scenarios and Scenario Sharing .. 8

7.3 Using Research Quality Software... 8

7.4 Shifting Objectives.. 9

8 Conclusions... 10

 ii

Appendices.. 11

A. Project Overviews .. 12

(A-1) Taming Cyber Incognito, David Wells and Paul Pazandak, Working
Conference on Complex and Dynamic Systems Architectures, December 2001,
Brisbane, Australia.. 12

 1 Introduction... 13

 2 The Form & Use of Models .. 13

 3 Why Static Modeling is Insufficient ... 15

 4 Perpetual Modeling... 16

 4.1 Information Sources.. 16

 4.2 Information Profiling .. 17

 5 Software Surveyor .. 18

 5.1 Architecture... 18

 5.2 Current Implementation Status ... 19

 6 An Example .. 20

 7 Open Issues & Next steps ... 22

 8 Bibliography ... 24

(A-2) Measures of Success, OBJS Report, October 2000 25

B. Technical Reports... 30

 (B-1) Survey of Existing Instrumentation Tools, Paul Pazandak, OBJS Report,
October 2000.. 30

(B-2) Probe Architecture & Functionality, Paul Pazandak,December 2000. 34

(B-3) ProbeMeister: Distributed Runtime Software Instrumentation, Paul Pazandak
and David Wells, 1st Int'l Workshop on Unanticipated Software Evolution (USE),
Spain, June 2002 ... 42

 1 Introduction.. 43

 2 Overview of ProbeMeister.. 44

 2.1 Related Work .. 45

 3 ProbeMeister Architecture ... 46

 3.1 Communication Manager.. 47

 3.2 Probe Manager .. 47

 3.3 Configuration Manager... 48

 3.4 User Interface.. 48

 3.5 Other Interfaces... 49

 iii

 4 Probes... 50

 5 Issues.. 51

 6 Plans... 53

 7 Acknowledgements.. 53

 8 Related Work ... 53

C. Software Specification Sheets.. 55

(C-1) OBJS ProbeMeister .. 56

(C-2) OBJS Gauge Tool Set .. 57

(C-3) OBJS EnviroProbes.. 59

(C-4) OBJS XML2Java.. 60

D. User Manual.. 61

E. Demonstrations & Tech Transfer .. 65

(E-1) IntelliGauge TIE - Using Gauges Throughout the Software Lifecycle to
Improve Internet Information Systems, IntelliGauge Project Team, October 2000. 65

(E-2) Software Surveyor: Dynamically Mapping Untamed Software Applications,
OBJS Project Brochure, June 2001... 76

(E-3) Software Surveyor: Dynamically Mapping Untamed Software Applications,
OBJS Project Brochure, June 2002... 80

(E-4) Demo Abstract, OBJS Report, June 2002 .. 84

(E-5) White Paper – Dynamic Modeling and Analysis Tools for Cougaar............. 85

(E-6) White Paper – Ensuring the Robustness of Service Discovery Responses 90

 Ensuring the Robustness of Service Discovery Responses 91

 Executive Summary .. 91

 Background... 91

 The Problem.. 92

 The Root Causes ... 93

 Nature of the proposed solution.. 94

 Details, Architectural Fit & Technology to Build On................................... 95

 Competing approaches.. 97

 Deliverables Schedule... 98

(E-7) Report on Demonstrations of ProbeMeister Technology to the UltraLog
Program... 100

 1

1 Executive Summary

The military of the future will increasingly rely upon "information superiority" to
dominate the battlespace. Achieving information superiority will require software
applications that are far larger, far more complex, and far more distributed than
comparable applications in existence today. Such systems are highly dynamic, due to
the physical movement of components, resource loss, changing missions, software
upgrades, and change of organizational structure. Understanding the status and behavior
of evolving systems is a daunting task that is not well addressed by existing tools or
procedures.

This project developed and demonstrated a suite of runtime tools to enable this
understanding. These tools (collectively called Software Surveyor), are designed to
dynamically deduce the configuration and behavior of component-based software and to
reflect that knowledge back into existing (primarily static) architectural models for
analysis by other tools.

1.1 Administration
Participants:
• Dr. David Wells (PI)
• Dr. Paul Pazandak

Project Website: www.objs.com\DASADA

This Website contains contact information and links to most of our technical reports.
This Final Report contains only papers containing the most up to date information on all
topics. Additional papers showing intermediate steps we took to get where we are can be
found our project Website

 2

2 Problem Statement
The military of the future will increasingly rely upon "information superiority" to
dominate the battlespace. Achieving information superiority will require software
applications that are far larger, far more complex, and far more distributed than
comparable applications in existence today. Such systems are highly dynamic, due to
the physical movement of components, resource loss, changing missions, software
upgrades, and change of organizational structure. Knowing how such a system is
currently configured, whether it is behaving as expected, what is causing any problems,
and how it can be legitimately modified into a better configuration are essential to their
reliable use. At present, there are few tools that address any of these issues in large
systems outside of test harnesses during development. Valuable as these tools are during
system development, they provide little help in the field.

2.1 Objective
Understanding the status and behavior of evolving systems is a daunting task that is not
well addressed by existing tools or procedures. The objective of this project was to
develop and demonstrate a suite of runtime tools to enable this understanding. These
tools (primarily a collection of probes and gauges, collectively called Software Surveyor),
are designed to dynamically deduce the configuration and behavior of component-based
software and to reflect that knowledge back into existing (primarily static) architectural
system models where it can be used by other tools to reason about correctness and
evolvability.

 3

3 Approach
Few modern software applications are static; their components, and the components’
organization with respect to each other, evolve over time as the result of new
requirements, bug fixes, performance improvements, feature enhancements, and changes
in their environments as the systems with which they interact change. Architectural
models of intended and actual organization and behavior are increasingly used to check
correctness and as a basis for managing evolution. However, statically defined models
are inherently incomplete because of outside influences such as actions by third-party
software, movement of military units using parts of the application, or degradation of the
operating environment.

Dynamically reconfigurable software is radically different from traditional static
software. Component replacement is a common occurrence, and components are often
generated on-the-fly from specifications of client requirements and service provider
capabilities. Connections between components are changed frequently by a wide number
of tool types. Even the types of the objects/data passed between components are
malleable; programming language types are typically encoded in XML and reconverted
for program use by translator tools that operate based on metadata stored in files
associated with the data. In consequence, the developer of a software component may
not know the identity of the other components with which the component will be
interacting, the types or exact behavior of those components, their location, or even the
types of the information actually being exchanged. Not only is it currently difficult or
impossible to determine how connectivity has been decided, it is often the case that
critical decisions are made without propagating the knowledge that a decision has even
been made to the proper authorities. This combines to make runtime monitoring and
debugging difficult, and introduces obvious security risks. Detailed knowledge of actual
runtime configuration and behavior to complete existing static models is thus essential.

This requires the following, all addressed by Software Surveyor:
· A large, diverse, efficient, and flexible collection of probes to gather application

and environmental data.
· An extensible collection of gauges to perform the analysis of raw data collected

by probes.
· A communications framework to allow interoperation and incremental addition of

new probes and gauges.
· A logical connection between the monitoring mechanisms and the architectural

specifications to allow specifications to be used to drive monitoring and to reflect
derived information back into the models.

Appendix A contains papers describing goals and approach in greater detail.

 4

4 Technical Results
Technology produced as part of Software Surveyor is discussed below. Technology falls
into the broad categories of probes, gauges, event infrastructure, and modeling.
Appendix B contains papers with additional details and Appendix C contains
Specification Sheets for key software produced. Appendix D contains the User Manual
for ProbeMeister. Additional information on how to run the various gauges is packaged
with the release.

4.1 Probes
Probes gather low-level application and environmental information. Most probes are
designed to work in specific environments, with the type(s) required for a given
monitoring situation depending upon the data gathering requirements, the application's
implementation language, source code access, operating environment, and security
considerations. Thus, runtime profiling requires a diverse set of probes. We have
developed a tool, ProbeMeister, to (automatically or under user control) insert probes
into distributed Java applications at runtime by dynamic bytecode modification.
ProbeMeister comes with an extensible library of useful probe types and has facilities for
managing configurations of probes to allow sets of related probes to be managed
together. ProbeMeister-inserted probes can be removed when no longer required to
reduce overhead. With ProbeMeister, generic probes can be used to gather information
or the user can define custom “probe plugs” in a few lines of Java to collect exactly the
kinds of information required. Writing a probe plug requires only minimal Java
programming skills. ProbeMeister can be used to instrument application-specific code or
Java core classes such as File, URL, and I/O stream access which are generically useful
for monitoring component interactions. ProbeMeister is compatible with all relevant
Java standards and has in fact influenced the Java debug interface through interactions
with Sun developers.

4.2 Gauges
Gauges combine monitored events from (potentially) multiple sources into meaningful
models of application configuration, behavior, and resource consumption. Examples of
gauges developed under this project include: a Coalescer that merges streams of
separately collected event information and renders this information on a timeline; an
EventMonitor that categorizes events by type and renders HTML- and XML-based dis-
playable summaries with expandable detail; an EventMerger that unifies reports of the
same event reported at differing levels of abstraction to provide a more complete and
coherent picture; a StackTracer that converts streams of application events into a trace of
program execution and emits an XML representation; Historian that archives execution
traces and computes statistics of behavior; and a Mapper that provides a visualization of
the time-based relationships between events of an application. Most gauges are Web-
enabled so that their outputs can be delivered easily to wherever they are needed by
human operators or other higher-level tools. Information determined by gauges can be

 5

reflected back into architectural specifications using facilities provided by the DASADA
gauge infrastructure so that models can be kept up to date.

4.3 Event Infrastructure
In conjunction with other DASADA projects, we developed and used common event and
dissemination mechanisms to allow probes and gauges from a variety of sources to
interoperate. These were refined as more probes and gauges were developed and the
requirements become more clear. Software Surveyor utilizes these mechanisms.
Software Surveyor uses the Siena event distribution mechanism (contact Alex Wolf at U-
Colorado for the latest version of Siena). We do not guarantee that Software Surveyor
will remain compatible with future versions of Siena.

4.4 Connecting to Architectural Models
Architectural models are used in two ways by Software Surveyor. First, architectural
models of probes, gauges, and the application can be used to drive gauge and probe
placement. A user (or a program) can specify at the model level that a particular property
of the model is to be monitored. This drives a process of model combination that results
in directives to place particular probes and gauges into particular places in the application
and its environment. This allows users with familiarity with the application’s overall
behavior and structure but without knowledge of implementation details to initiate
monitoring as needed to solve problems in the field. A second use of architectural
models by Software Surveyor is that information deduced by gauges can be reflected
back into the architectural model of the application to allow third-party tools (some of
which are developed by other DASADA projects) to determine if the system is operating
within specified bounds and initiate corrective actions if this is not the case. Model
feedback was demonstrated as a narrow path concept demonstration. It is not a mature
tool at this time.

 6

5 Demonstrations & Tech Transfer
Software Surveyor tools have been applied in two annual DASADA demonstrations to an
intelligence gathering and analysis tool currently in use in the US Navy Pacific
Command (PACOM). This provides a technology transition path and, equally
importantly, forced us to develop probes and gauges that can be applied even when the
application is incompletely specified (a key goal) and brought to the forefront a number
of challenging issues related to ambiguity in the precision of the monitored events (a
simple example is clock skew in distributed applications). Software Surveyor is now
mature enough that it can be evaluated in the context of a number of demanding
applications as part of a planned series of large-scale experiments (described below).
Appendix E contains more details.

As part of an expected DASADA Phase II effort to inject DASADA technology
(including Software Surveyor) into a number of DoD applications and to measure the
utility of that technology, we supported the efforts of several DoD organizations in
writing white papers describing potential Phase II activities.

• PACOM – experiment with the use of DASADA tools in the context of a loosely
coupled Internet-based intelligence gathering tool called GeoWorlds that is
currently in use in PACOM

• TACOM – experiment with the use of DASADA tools in the context of the Future
Combat System (FCS) as part of managing runtime reconfiguration of on-board
software in response to battle damage and evolving mission needs

• AFRL – experiment with the use of DASADA technology in monitoring and
maintaining the functionality of a Master Caution Panel being developed to manage
the software in AF Air Operations Centers

• Common Infrastructure – continued development of a common event dissemination
and control infrastructure to be shared across Phase II projects to reduce costs and
enable interoperation

Three of these efforts were selected for Phase II follow-on, but funding for Phase II was
withdrawn. As a result, this work will not be continued at this time. All white papers
have been provided to the government, but are not included in this report since they are
the property of the DoD Service organizations leading the efforts.

Three potential uses of ProbeMeister in the DASADA UltraLog Program were
demonstrated to participants in the UltraLog Program. These uses were: for Red
Teaming, distributed stress injection and data collection, and distributed debugging of a
messaging subsystem. In each case, ProbeMeister was applied to a small, but live
Cougaar society. Several groups in UltraLog are evaluating the use of ProbeMeister for
these purposes.

ProbeMeister has been downloaded by 5 R&D and assessment groups. It is currently
being used for instrumenting an implementation of the Joint Battlespace Infosphere at the
Air Force Research Laboratory (AFRL).

 7

6 Publications and Presentations
The following papers (see also Appendix) appeared in refereed conferences proceedings:

• Mapping Cyber Incognito, David Wells and Paul Pazandak, Working Conference on
Complex and Dynamic Systems Architectures, December 2001, Brisbane, Australia.

• ProbeMeister: Distributed Runtime Software Instrumentation, Paul Pazandak and
David Wells, 1st Int'l Workshop on Unanticipated Software Evolution (USE),
Spain, June 2002.

The project results have been presented at the following workshops and meetings.
Copies of the overheads used appear on our Website and were distributed at the meetings.

• DASADA Kickoff Meeting – Santa Fe, NM, Sept 2000.

• DASADA Winter PI Meeting - Monterrey, CA, Jan 31 – Feb 2, 2001

• DASADA Demo Days & PI Meeting – Baltimore, MD, July 2001.

• Working Conference on Complex and Dynamic Systems Architectures, Brisbane,
Australia, December 12-14, 2001.

• DASADA PI Meeting – Brisbane, AU, December, 2001

• DASADA 2002 Demo Days & PI Meeting – Baltimore, MD, July 2000

 8

7 Lessons Learned
7.1 Big Picture & Local Depth are Both Essential
Monitoring, mapping, and controlling evolving software requires many different kinds of
tools. As such, it is necessary to take a “big picture” view of the problem to avoid
designing a solution to a specific part of the problem that is totally incompatible with
anything else and is thus not useful. At the same time, to be useful, the tools have to be
sufficiently robust that they can address sizable problems and be used by others who are
not willing to “baby sit” temperamental tools that only work under limited circumstances.

In this regard, we believe that we accomplished our goals quite well. We were able to
demonstrate in a narrow path, a complete cycle using application models to aid in probe
placement, actual probe insertion, collecting monitored events over a standard bus,
coalescing and analyzing the monitored events through a small collection of gauges,
visualizing the gauged information in a user friendly way using Web browsers, and
feeding the information back into the original models for future use. At the same time,
our probe tool (ProbeMeister) is quite mature, is based on Java standards, has been
evaluated by Sun Java engineers as being compliant, and in fact influenced part of the
Sun debugging interface. Many of the gauges are also generally useful on their own.

7.2 Early Scenarios and Scenario Sharing
Our coding efforts were most successful after we were able to scope the development
through a semi-realistic scenario. Software Surveyor as designed encompasses a wide
range of capabilities; a far larger number than can reasonably be implemented in a project
of this size. The IntelliGauge TIE scenario centered around GeoWorlds allowed us to
focus on only those techniques required for that scenario, while at the same time
maintaining consistency with other projects. Being able to share a test application
developed by other program participants reduced the work factor, ensured that we were
not solving artificial problems of our own creation, and having access to the developers
allowed us to understand their real diagnostic and modeling “care-abouts”. The fact that
the test application was being used externally in DoD provided additional realism and a
tech transfer opportunity.

7.3 Using Research Quality Software
As usual when attempting to use other research quality software, the developmental
maturity of that software was an issue. The quality of the systems we used varied. While
this issue really has no resolution (R&D use of other R&D software is inevitable and
desirable), a useful thing to keep in mind is that it is desirable to restrict the number of
such evolving software whenever possible and to use more stable (even if less
interesting) software when the “bang for the buck” of using the most advanced software
is limited in a particular context.

 9

7.4 Shifting Objectives
DASADA was plagued by uncertainty about the follow-on Phase II experiments, which
ultimately were not funded. In any project, it is very helpful to have a clear idea of
duration, as this allows better scoping of the design and development activities. In
particular, if it is known that a program is terminal, then work is done to reduce the
number of development activities and to achieve higher quality results with the ones that
remain. On the other hand, if the project will continue, and especially if the continuation
is part of a larger experiment, the proper thing to do is to seek the tool coverage necessary
for the experiments, even if this means that the individual tools are less mature, since
there will always be time to improve them during to course of the experiments. This was
not possible in DASADA.

10

8 Conclusions
We feel that the project was quite successful, although we did not get as far as we had
hoped. We are quite satisfied with our overall vision of a closed model-monitor-analyze-
model loop for addressing the complexities of evolving, underspecified systems and the
fact that we could demonstrate this complete loop in a real example application. We are
also very satisfied with the probe software we developed for dynamic monitoring of Java
programs. ProbeMeister has proven itself to be quite useable and has been employed in a
variety of ways we had never previously considered, particularly red teaming and stress
injection for testing.

We are actively trying to migrate ProbeMeister into a key role in debugging and
assessing the Cougaar agent architecture as part of the DARPA UltraLog program. This
will be an excellent tech transfer vehicle, because not only is Cougaar the underpinnings
for a future military logistics system, it is also expected to play a key role in the Future
Combat Systems software.

We are pursuing additional funding to continue this work, through our UltraLog
connection and through SBIRs. We are also exploring the commercial potential of
ProbeMeister. Continuation of this work is critical to the success of componentware and
is not being addressed elsewhere.

11

Appendices

(See also www.objs.com\DASADA for additional documents)

12

A. Project Overviews
(A-1) Taming Cyber Incognito, David Wells and Paul Pazandak,
Working Conference on Complex and Dynamic Systems Architectures,
December 2001, Brisbane, Australia.

Abstract: Static models derived from specifications are inherently inadequate for
capturing the reality of dynamic, reconfigurable software. Instead, continually updated
models that combine static and dynamic information about software requirements,
architectural patterns, components, connectivity, actions, and resource utilization are
necessary. The Software Surveyor is an extensible toolkit for collecting, disseminating,
and analyzing such dynamic information. The architecture and current status of Software
Surveyor are presented, and the system’s use is illustrated through an example
application in the information fusion domain.

In Proceedings: Working Conference on Complex and Dynamic Systems Architectures,
Brisbane, Australia, Dec., 2001.

13

Taming Cyber Incognito
Tools for Surveying Dynamic/Reconfigurable Software

Landscapes

David L. Wells and Paul Pazandak
Object Services and Consulting, Inc.

{wells, pazandak}@objs.com

Abstract

Static models derived from specifications are inherently
inadequate for capturing the reality of dynamic,
reconfigurable software. Instead, continually updated
models that combine static and dynamic information about
software requirements, architectural patterns,
components, connectivity, actions, and resource utilization
are necessary. The Software Surveyor is an extensible
toolkit for collecting, disseminating, and analyzing such
dynamic information. The architecture and current status
of Software Surveyor are presented, and the system’s use
is illustrated through an example application in the
information fusion domain.

1. Introduction
The power and flexibility of modern software makes

the software landscape increasingly a cyber incognita,
analogous to the terra incognita (unknown territory) that
baffled explorers, frightened merchants and impeded
progress hundreds of years ago. Cyber incognita’s
equivalent of maps, surveying instruments, and marked
trails are design specifications, monitoring and diagnostic
tools, and descriptions of applications’ normative
behavior; all are as inadequate in cyber incognita today as
their equivalents were in terra incognita 200 years ago.
Design specifications are incomplete, inaccurate, or
inconsistent; software probes cannot observe all
significant events; techniques to correlate independently
recorded observations are limited; and descriptions of
normative behavior are often (especially in Web-based,
agent, or survivable systems) described as “best effort”
with no concrete notion of what that means. Further, the
dynamic nature of many modern applications means that
they are continually reorganizing themselves in response
to changed user demands or resource availability; imagine
Lewis and Clark having to deal with rivers and mountains

that changed position every few hours. Hic sunt dracones
– here are dragons.

A multi-faceted approach to remedying this situation is
needed, including: 1) formal, static specifications of
required/expected behavior, and 2) dynamic, runtime tools
to flesh out the static specifications and to verify that the
application is adhering to specifications. Software
Surveyor [1], a framework and an extensible set of probes
and gauges to dynamically deduce the connectivity and
behavior of evolving, under-specified software
applications being developed as part of the DARPA
DASADA Program [2], provides many of the required
dynamic capabilities and is compatible with the coming
generation of modeling tools.

Section 2 of this paper discusses the form and uses of
application models. Section 3 argues that static techniques
are inherently insufficient for modeling modern software,
while Section 4 discusses how static and dynamic analysis
together can provide better models and discusses the kinds
of information that can be obtained from various points in
the software lifecycle. Section 5 presents Software
Surveyor; a suite of architecturally related tools to collect,
disseminate, and analyze information collected by runtime
application monitoring. Section 6 presents an extended
example of the use of Software Surveyor as applied to a
loosely coupled Internet information analysis application.
Section 7 identifies future work.

2. The Form & Use of
Models

A model is an abstraction of a real system that captures
the essential elements, organization, and activities of that
system. Models can define “families of systems” or can
define a specific instantiation of a system. The xArch
system [3] based on the Acme architecture definition
language (ADL) [4] makes this distinction explicit and
uses the same modeling language to define models at each
level.

14

Models can be used to constrain system organization or
behavior and provide a basis for reasoning about,
simulating, or validating behavior. For example:

How are the components connected? Do all
connections meet specifications? Are all required bindings
satisfied? Are unexpected components present? Do
seemingly valid bindings produce expected behavior?

How, when, and why were the connections made?
Who/what is responsible for an incorrect binding? Can a
specific binding be changed? Is some binding tool (e.g., a
Trader) using a bad selection policy? Are binding
decisions made consistently?

What is the physical organization? Where are the
components physically located? Where are choke points?
Are untrusted machines being used? Are components
vulnerable to physical assault/failure?

How does the current configuration compare to other
configurations? Is the configuration consistent with the
specification? How does a faulty configuration differ from
a known good configuration? What differences exist
between a currently faulty configuration and a previously
working configuration?

Has a configuration changed? What changed? What
process changed it? Was a change authorized? Did an
authorized change actually happen? Does a change
indicate a possible intrusion or failure?

Are there unused or unexpected components? This
provides an opportunity for pruning the configuration to
reduce footprint, to identify potential viruses and Trojan
Horses, and to simplify the evolution process by not
evolving unused modules.

What are the activity patterns? Are QoS constraints
met and are there hot spots? Are there patterns of
connection quiescence? This provides input to resource
allocation & optimization tools and helps to identify
“suspicious” activity. It can also be used to allow unused
connections to drop safely and identify “windows of
opportunity” for evolution.

How are the components interacting? What functions
are invoked on the various connections? This is useful for
ensuring compliance with specifications, security
monitoring, and general diagnostics.

Are there unused functions/methods of libraries/
components? This can allow more specific library loading
to reduce code footprint and simplify evolution by only
upgrading functionality actually in use.

A model is inherently an approximation of the system
being modeled. The approximation occurs because the
model suppresses (unnecessary) details or because the
model is incorrect in some respect(s). This requires an
understanding of:

• What constitutes an “essential element,
organization, and activity of the system”.

• How those items can be determined.

In this work, we consider componentware; software
that is assembled by composing immutable, preexisting
parts, possibly using “glue” software to facilitate the
composition. The model of a componentware system is an
annotated graph, whose nodes correspond to the
immutable components and whose edges correspond to
bindings (connections, whether actively used or not)
between components. This logical organization
constitutes the topology of the model. There is also a
geometry corresponding to the physical computing,
storage, and communications resources on which the
components execute. Both may change over time, and the
geometry may change while the topology remains constant
(e.g., a process is relocated) [5].

Thus, the following are the salient constructs of a
configuration:

• The immutable components
• The logical connections between

components (who calls whom & protocols
used)

• The resources on which the components
execute (hardware & software
environments)

• The connection medium (physical paths)
Applications can be profiled at many levels of

abstraction. Since the point of modeling is to support
some set(s) of users, it is appropriate to choose level(s) of
abstraction that are meaningful to them. This means that
the granularity of the model should be such that the
modeled components are familiar to the users and that use
of the model can point to practical remedial actions (e.g.,
restart a service, use alternate communications, choose a
service alternative, do without a non-responsive service)
that can be taken given the skills and tools available to the
users.

Matching the level of abstraction to the actions that can
be taken is particularly important, since if the proper tools
are lacking to make a change, a portion of the application
is immutable to that class of users and therefore should be
considered as a component from that point of view
regardless of how complex it might actually be. For
instance, modifying the implementation or installation of a
remote service might not be allowed, but switching to an
alternate service might be. In this case, the knowledge
that the remote service has failed is sufficient; details
about how and why it failed are of no use and only create
mental clutter. In Section 6 we will see how these concepts
are applied in practice.

Note however, that a model is actually a hypergraph.
An immutable component in one abstraction may in fact
expand into a graph of smaller components in a finer-
grained view or a view from a different perspective. This
is good, because it again allows viewing a configuration at

15

a useful level of detail for the task at hand. An implication
of this is that Software Surveyor must coordinate its
collection, analysis, and presentation activities based on
the desired view(s). This notion is called focus, and is
discussed further in Section 7.

3. Why Static
Modeling is
Insufficient

It has always been impossible to completely
characterize everything important about large, distributed
applications, but with yesterday’s relatively static
applications it was possible to specify much of the relevant
information as part of the design, implementation, or
deployment processes and then to test in a constrained
operating environment to ensure that the desired behavior
was (more or less) achieved prior to actual use. Often, this
was not particularly well done (especially when relying on
multi-source components from vendors with varying
quality controls and documentation standards), but at least
there was a hope that with better tools, methodology, or
training, it could be accomplished.

However, this is a vain hope with modern, loosely
coupled software that is often constructed from a mix of
custom and preexisting components originating from a
variety of sources. Individual components can (and
frequently do) evolve independently due to new
requirements, bug fixes, performance improvements, and
feature enhancements. Field upgrades of deployed code
(e.g., by providing new libraries) can unwittingly cause
problems for other programs that had previously been
performing correctly (e.g., a DLL is upgraded to support
application A, but causes problems for application B
which also uses it). Lack of complete dependency
information makes it impossible to know what might be
affected by the upgrade or even to know that a subsequent
malfunction might be related to a particular change. New
components may be introduced, including components that
are generated on-the-fly from specifications of client
requirements and service provider capabilities and are
never seen by a human or subjected to normal testing.
Even the types of the objects/data passed between
components are malleable; programming language types
are typically encoded in XML and later reconstituted for
program use by translator tools that operate based on
metadata stored in files associated with the data.

Flexible architectures with loose inter-module coupling
has many well known advantages, but in consequence, the
developer of a component or application may not know the
identity of all components, the types or exact behavior of

those components, their location, or even the types of the
information actually being exchanged. This makes it very
difficult to predict the effect of proposed changes, to
determine why something does not work properly, or even
to figure out why something works well in one
environment but does not work in a seemingly comparable
environment.

Further, much of the new software is designed to make
many of its configuration decisions on the fly, depending
on its environment. Frequently, these decisions are
outside the direct control of the application developer.
This includes mobile code that binds to local instances of
services, CORBA services that are bound to existing
servers by a Trader, and survivable systems that
reconfigure to use remaining resources after attack or
failure. Not only is it currently difficult or impossible to
determine how connectivity has been decided, it is often
the case that critical decisions are made without
propagating the knowledge that a decision even has been
made back to the proper authorities.

Finally, the operating environment is frequently too
complex to replicate for testing purposes (imagine
replicating the Internet to test software that filters and
streams time-critical data over an open network).

The key observation is that it is becoming increasingly
difficult to know in advance how components actually use
each other due to greater system complexity combined
with more dynamic configuration choices. Design
specifications, architecture descriptions and formal
methods, configuration information produced during the
process of instantiating and deploying code, and tools that
profile systems under development all provide valuable
information, but even collectively they still leave notable
gaps in the community’s ability to gather “ground truth”
about the real-world behavior of distributed, component-
based systems. A brief examination of these sources of
information shows why this is so.

Formal specifications are good for describing desired
behavior in a way that supports reasoning about system
properties; however, implementation details are difficult to
capture this way and formal specifications for externally
developed components are hard to come by. Since few
systems work in isolation from all external components
(including operating systems and communications
software), formal specifications are necessarily
incomplete.

Software construction tools (compilers, linkers,
configuration management, etc.) that instantiate and
manage software generate a large amount of information
that is generally complete and accurate when produced.
However, this kind of information suffers from one serious
shortcoming: it may accurately reflect the connections that
existed when the software was first created, but there is no
feedback process to ensure that it remains accurate as the
system evolves, particularly if the changes were caused by

16

a tool other than the one that produced the initial
information. Further, such tools generally only identify
the static interconnectedness graph of an application and
not how those interconnections can be used.

Profiling tools found in software development
environments do capture some of the dynamic behavior of
systems. However, they have serious coverage gaps when
considered in the context of component-based systems
where key components are frequently outside the domain
of the monitoring tools (wrong language, different
platform, remote) and hence cannot be profiled. Even
with integrated development environments that support
multiple environments and distributed debugging, the
problem remains that the tools are intended for use during
the development phase rather than during the entire
lifecycle of the system and as a result are too complex and
resource intensive for everyday use with deployed
systems.

Real, running component-based systems thus have
behavior that cannot be adequately described without
directly observing the behavior of the system “in the
wild”. A major thrust of the Software Surveyor project is
to construct living, constantly updated models of dynamic,
under-specified applications by combining static
information about the modeled system with information
about binding decisions, component execution and
interactions, and resource use collected during runtime.
Software Surveyor fills a void left by more traditional tools
that are employed prior to program use.

4. Perpetual Modeling
Information about application structure and behavior

can be obtained from several sources, including design
artifacts, application artifacts, runtime monitoring, and
historical information about prior executions. However,
no single source can provide all the information necessary
to completely profile an application, so it is necessary to
extract or collect information from all of these sources.
Collectively, they:

• Identify the kinds of components and
interactions that are important enough to
profile,

• Provide a conceptual framework in which
collected information can be organized,

• Tell where to look to collect the necessary
information to allow a profile to be
constructed,

• Provide expectations to which observed
organization and behavior can be
compared.

4.1 Information Sources
Design Artifacts: Design artifacts are descriptions of

intended configurations and behavior. Static specifications
limit undesirable behavior and mandate certain desirable
behaviors. Static design specifications cannot deal
adequately with the following kinds of dynamic behavior
without unduly restricting the benefits of the dynamism:
dynamic binding decisions by third-party binders, dynamic
addition, deletion, or movement of independent data
sources, changes to the schema of independent data
sources and components, transient behavior. Static
specifications cannot be arbitrarily fine grained and cannot
generally anticipate all environments and conditions in
which the software may be expected to operate. Further,
enforcement of many types of design constraints, e.g.,
quality of service, requires runtime monitoring.

Application Artifacts: There are two kinds of
application artifacts: information (such as configuration
and source code files) that are below the level of design
and are used to further reify the application’s
configuration, and information that the application
produces that is generally available without using probes.
Both may require interpretation to be useful, but are easily
captured. In addition to providing concrete information,
they also indicate which events to look for; i.e., where to
place probes. Generally, application artifacts do not
provide sufficient insight into how the information was
produced (the job of design artifacts and runtime
monitoring) or what its purpose is (the job of design
artifacts). Also, failures are particularly hard to analyze
using only application artifacts. Finally, because separate
executions are often totally independent, it is hard to
detect anomalies from one execution to another.

Runtime Monitoring: Runtime monitoring of an
application and its environment can add details that are left
unspecified by design specifications and can identify the
specific elements filling “roles” defined by the design.
The specific elements might not have existed when the
design specification was made and/or might be selected by
third party software outside the control of the application.
Finally, runtime monitoring is necessary to ensure that
design constraints are being met. Runtime monitoring
cannot tell why a particular event occurred, merely that it
has. Interpretation must be with respect to design and
application artifacts.

Historical Record: The historical record is the time-
series behavior observed through runtime monitoring of
multiple executions of the application. This can be used to
informally determine expectations of behavior in any of
the dimensions that can be monitored, and can serve as a
basis for detecting anomalous behavior. In a sense, the
historical record forms a piece of the design specification:

17

“it should work in a certain way because that’s the way it
always has worked”.

4.2 Information Profiling
Profiling requires a diverse set of probes to collect

information from the sources described above. Thus, a
variety of probe types are needed to profile even
reasonably complex applications. Reasons for using
different kinds of probes include:

• Probes are designed to work in specific
environments. The types of probes that will
be required for a given deployment will
depend upon the data gathering
requirements, the application's
implementation language, source code
access, and operating environment.

• Probes have different information capture
capability. Even if environmentally
compatible, and monitoring the same event,
different probes may be able to capture
different information about the event. For
example, when a process spawns a child
process, a new Windows task is created.
An application-specific or language-
specific probe could capture the arguments
used to start the new task, but information
like process-id and memory utilization that
could be used to externally monitor the task
are better captured using either
environmental probes or probes that
monitor O/S events like process creation.

• Security and ownership concerns may
mandate that only certain kinds of probes
are allowed to be placed and that only
certain insertion points are possible. This
indicates another reason that choices in
probe technology have value.

The following artifacts are of interest:
Component Types: The types of components that are

significant to the intended users of the gauge outputs. The
definition of the components of interest is dictated by the
level of abstraction at which a particular class of users
understands and manipulates the application. See [5] for a
further discussion of how components of interest are
determined. Once the interesting classes of components
are identified, the classes of connections that must be
profiled become obvious.

Architectural Patterns: Patterns (in the Gamma [6]
sense) defining how components of interest can be
connected together. Examples are trees, object buses,
server farms, object factories, etc. An application may
employ many patterns. The key point is that patterns
define the way in which components will interact in the
application, not which specific components fill the various
roles in the patterns. Architectural patterns provide a
framework within which components and connections
may be interpreted.

Static Connectivity: Mandated connectivity between
specific components of interest. This is more precise than
an architectural pattern, since it specifies more detail and
identifies particular components filling the various roles.

Interaction Protocols: The protocols by which
components of interest are allowed to interact. Examples
are HTTP, CORBA, Java RMI, SOAP, email, etc. Since
component interactions are a prime place to insert probes,
protocol documentation can tell where and how those
probes can be inserted.

Initial Configuration: When applications are deployed,
they have some initial configuration defined by
mechanisms such as configuration files, registries, or the
like. Some defaulting may be used to complete a partial
specification (e.g., localhost is mapped to an IP address).

Information Output: Most applications produce some
output in an easily accessible form such as displays, file or
database writes, or the use of StdOut and StdError. Such
output can represent the primary results of the application
or can be diagnostic. In general it is easily captured
without inserting probes directly into the application since
it is intended to be exposed; however, it frequently
requires parsing to interpret its meaning.

Dynamic Components: It is necessary to know the
components actually in use and desirable to know the set
of components available for use. Both can change over
time. The available components may be explicitly
expressed in some kind of registry, may be a set identified
on-the-fly by a binding mechanism such as a Trader, or be
generated on-the-fly from specifications (e.g., glueware)
or from data accessed by the application. In addition to
knowing which components are available and in use, it is
desirable to know why (i.e., by what mechanism) they
were selected.

Dynamic Bindings: Component connectivity must be
tracked over time. This includes the components
connected, the roles they play in a connection, and
how/why the connection was established (e.g., the binding
agent and the binding arguments). Dynamic bindings must
be checked for adherence to the architectural patterns
defined for the application.

Messaging Activity: This refers to all kinds of
messaging between the components of interest. The types
of these communications are defined by the interaction
protocols identified elsewhere. It includes the initial

18

message, response, and any exceptions thrown. Note that
exceptions need not be returned to the original caller, as
the recipient will be defined by the interaction protocol.

Environment: Required (specified) and actual (sensed)
environmental properties such as operating system, CPU
speed, memory, disk, bandwidth, other required software
should be captured and compared to determine if the
requirements are met.

Extra-application resource utilization. How much of
various resources are being used by other applications and
are therefore unavailable to the application of interest?
This is obviously a dynamic issue, in that the other co-
resident applications will change from execution to
execution. This is of interest since it may predict ability of
the application to meet QoS requirements, user
expectations (or may make it possible to warn the user that
the results will be forthcoming, but it may take longer), or
even the ability of the application to succeed. Under
certain load conditions, it may be determined that it would
be best to defer the execution since it is highly likely that
it won’t be able to complete.

Data Accesses: Data access refers to the data sources
accessed (e.g., a particular database), the arguments used
in the access (e.g., a query), and the items returned (e.g.,
the specific tuples). Types of data accesses of frequent
interest are files, databases, and Web pages. Application
behavior can be strongly influenced by file content. For
example, the schema for an XML page is generally
defined in another page containing a DTD or XML
Schema definition. This may in turn be used by parsers to
generate programming language (e.g., Java) objects, so in
effect the data accesses may cause the generation of new
components.

Expectations of Behavior: It is important to know if an
application is behaving properly. This takes many forms,
including constraints on (full or partial) results, quality of
service measurements, resource consumption, or just a
“feel” that the system is behaving properly based on
experience with previous uses. Such information can be
captured from specifications, the historical record of prior
executions, and user feedback. For example, the amount
of time required to produce a complex result might not be
formally specifiable, but in practice may fall into a
relatively small range. Similarly, a user may know that a
certain data gathering activity usually produces a certain
number of “hits” without being able to state precisely why
this is so.

5. Software Surveyor
OBJS’ Software Surveyor is a profiling toolkit to

dynamically deduce and render the runtime configuration
and behavior of evolving, component-based software.
Information is synthesized from multiple sources and
combined and rendered in a variety of formats and made
easily accessible via the Web.

Software Surveyor addresses three distinct
issues:
• What is the application doing?
• What is it supposed to be doing?
• Is it doing what it is supposed to?
Software Surveyor requires limited prior knowledge of

application connectivity and has the ability to dynamically
deploy probes, allowing its use with dynamically
reorganizing applications and those lacking complete
specifications. The next two subsections discuss the
design of Software Surveyor and its current
implementation status.

5.1 Architecture
The toolkit uses a three-tiered architecture (Figure 1)

for runtime application analysis. The tiers correspond to
data generation, data dissemination, and data
consumption/analysis. The probe management
infrastructure (data generation layer) manages and
deploys probes to collect a variety of information from the
running application and its environment. The probes pass
on the collected information in the form of events to the
distributed event infrastructure (data dissemination layer).
This layer is responsible for relaying the events to
interested subscribers, called gauges, which are part of the
gauge infrastructure (data consumption layer). The gauges
merge the event/information streams and make sense of it.
In addi-

Figure 1. Software Surveyor

19

tion, results of this analysis are aggregated to identify
“behavioral norms” to augment incomplete performance
specifications. Finally, the probe infrastructure and
behavioral norms can be used to signal users when the
system is operating anomalously.

Probe deployment involves the insertion of probes,
statically or dynamically, into data streams and execution
flows so they can monitor and report on activity. The
probe insertion technique will vary depending upon what
is being instrumented, and when it can be or must be
instrumented. For example, some probe types (source code
probes) require precompilation-time insertion, while other
probe types can be inserted into binary or bytecode at pre-
runtime, or possibly during runtime.

Probe management is required for activation,
deactivation, static and dynamic configuration, and probe
removal.

Once deployed the probes generate typed information
streams. We have adopted a basic event classification
scheme that includes descriptors for type, subtype, and
probed component name. This information is used by the
event infrastructure and gauges for filtering and
processing. Data emission rates may depend upon the type
of probe, how it is configured, and the amount of activity
at the insertion point. For example, one environmental
probe (e.g. monitoring system activity) may be configured
to emit resource utilization every 5 seconds, while an
application probe (e.g. installed into the execution flow)
may emit data whenever the method it instruments is
invoked.

The data emitted by each probe is sent as events to the
distributed event infrastructure so that it may be
disseminated to interested gauges for analysis and
visualization. The event infrastructure will accept data
from any probe source, allowing Software Surveyor to
support compatible third party probes.

Gauges subscribe to events by specifying event types or
specific qualifying values or conditions based upon
attribute values contained within the events. They may
subscribe to multiple event types. Once a gauge receives
events it may combine data from multiple event streams,
perform analyses, synthesize new events, render
visualizations, send feedback to the probes, and pass on
information to other gauges.

5.2 Current Implementation
Status

The current version of Software Surveyor includes a
rudimentary probe management infrastructure including a
probe insertion tool and several types of probes; a
distributed event server; and several gauges.

In the initial version of Software Surveyor, we have
created two types of probes:

• AppliProbes are used to instrument the
application, and

• EnviroProbes are used to collect data from
the operating environment.

Our current set of AppliProbes is implemented in Java.
They are used to instrument both the target application and
the underlying Java core class library. The probes
generally emit method invocation arguments and related
environmental data such as stack traces, invocation time,
and thread information. Customized probes may emit
other variables as well.

A subset of these are precompilation-time probes
requiring insertion into source code. They are generally
specific to the target application and are used to extract
information that could otherwise not be acquired. We have
also directly instrumented several core Java library classes
to monitor application-environment communication, such
as File, URL, and I/O stream access. These instrumented
classes can be reused for any Java-based application
monitoring.

Another subset of AppliProbes used are bytecode
probes, which are inserted directly into Java bytecode at
pre-runtime, and to a limited extent during runtime.
Bytecode probes are inserted using a tool called the Java
ByteCode Instrumentor (JBCI).

The Java ByteCode Instrumentor (Figure 2) automates
the insertion of probes and probe stubs into Java bytecode.
JBCI modifies .class files by inserting bytecode using
customizable instrumentation techniques. JBCI can be
extended with new probes and instrumentation techniques.
Probes implemented in other languages can be called via
JNI.

Figure 2. Java ByteCode Instrumentor

Our current EnviroProbes call upon operating system
utilities to gather information on system status and
resource usage. They monitor system-wide CPU
utilization, application CPU utilization, and TCP
bandwidth. They generate events at discrete configurable
intervals.

20

While the current version of the probe infrastructure
relies heavily on manually inserted probes, the next
version will support on-the-fly probe insertion into
running Java programs.

The probe-generated events are distributed by the
SIENA Event Distribution Infrastructure [7]. SIENA uses a
hierarchical distributed server architecture enabling the
instrumentation and monitoring of distributed applications.
Software Surveyor gauges subscribe to and receive events
from SIENA.

The current set of gauges include Coalescer,
EventMonitor, EventMerger, StackTracer, Historian, and
Mapper. Once they receive events from the event server,
which contain XML-formatted data, the XML is
deserialized to first class Java objects for direct
manipulation (Figure 3).

Coalescer merges streams of separately collected event
information and renders this information on a timeline
chart, performing limited aggregation of events by time

interval.
EventMonitor categorizes events by type and renders

HTML- and XML-based displayable summaries with
expandable detail. EventMonitor includes a web server to
support browser-based access. It can be configured to
subscribe to any subset of, or all, published events.

EventMerger, an extension of EventMonitor, performs
event unification prior to rendering. Event streams may
report on the same activities, but at differing levels from
within the application. EventMerger identifies related
streams of events by analyzing event content (e.g. stack
traces, event type/subtype, component names and other
attribute values). This can help, for example, to view the

overall activities of each probed component in the
application.

StackTracer converts streams of application events into
a trace of program execution and emits an XML
representation. The events emitted by a probe may be
generated via several different execution paths involving
the probed method. This gauge provides insight into
frequency of invocation along each path. It can also be
used to filter out paths (and therefore events) so that
particular application behavior can be isolated for further
analysis.

Historian archives execution traces and computes
statistics of behavior.

Mapper provides a visualization of the time-based
relationships between events of an application.

Software Surveyor v1.0 is implemented in Java 1.3 and
has been tested under Windows 2000. v1.0 requires SIENA
for event distribution. EnviroProbes is currently available
only on Win2000 and WinNT.

6. An Example
We now illustrate the use of Software Surveyor in the

construction and maintenance of a continuing application
model. The selected application, GeoWorlds [8], is an
Internet information tool that allows intelligence analysts
to define “scripts” to locate, filter, and organize collections
of Web-based information. GeoWorlds is representative
of a large class of loosely coupled, highly distributed
applications in which exact configuration and behavior
cannot be specified a priori. Third-party components are
heavily used, configuration and data access decisions are

Figure 3. Software Surveyor Gauges

21

made at runtime by tools outside the direct control of the
application, and data sources may move, appear, become
unavailable, and change their schemas without notice. As
such, runtime monitoring and evaluation of behavior is
necessary to provide analysts with high level,
comprehensible support for determining whether a script is
likely to work, whether a script is executing properly and
making reasonable progress, and whether an information
collection is plausible [9].

Portions of GeoWorlds can be modeled statically.
Eventually, the model (both the static and dynamic parts)
will be represented in the Acme ADL [4]. Representing all
aspects of the model in this common, mature modeling
language will allow the use of existing visualization tools
and will enable the use of architecture analysis tools to
ensure that the dynamic behavior meets static constraints.
In the following, significant components and activities
appear in italics.

GeoWorlds software consists of a core that resides in a
JVM and an extensible collection of external services that
may be in a variety of languages and resident anywhere,
including within the JVM containing the core. The
services manipulate a collection of data sources (mostly
Web pages) using scripts to produce InfoSpaces.

The GeoWorlds core consists of a ServiceComposer for
graphically writing scripts and several job pools for
scheduling services accessible via different technologies;
e.g., RMI, CORBA).

The external services conform to a static architectural
pattern (a DAG of services); the leaves are Web search
engines that locate Web content, the internal nodes are
data manipulation services that filter, extract content and
organize collections of Web pages, and the roots are
visualization services that provide different views of the
InfoSpace. Information flow between nodes is encoded as
XML pages describing the InfoSpace and documents as
processed up to that point. Each service has input and
output schema to which they must adhere in order to
function properly. Scripts are checked for sanity when
they are constructed to ensure that input and output
schema requirements are met, but because services can
change their schema without notice, this is not always
accurate.

Data items of interest are the Web pages manipulated
by GeoWorlds (both source and pages constructed to
represent the structure of an information space), and
ancillary data sources (databases and files) accessed by
services as part of their own operation (e.g., a database
mapping place names to lat/long coordinates); these are
not known to GW and are a key source of bottlenecks and
errors if bound incorrectly or unavailable.

The static model of GeoWorlds as described above
provides the “shape” of the application and identifies the
kinds of components and activities that must be modeled
and monitored dynamically. However, it is clearly

incomplete, since the services connected together into a
script are written by analysts in the field and the pages
accessed, how they flow through the script DAG as they
are filtered and organized, and the behavior of an
execution cannot be known until runtime.

Probes were embedded into the application to collect
information about events identified by static analysis as
being relevant; these included service start/stop, URL
accesses, file accesses, and various initialization events.
Whenever a probe detected such an event or condition, it
was published as a SIENA event that could be subscribed to
by (remote) gauges. The Web-enabled Software Surveyor
EventMonitor and EventMerger gauges (Figure 4)
subscribed to these events and created summaries and
stack traces of application activity that lead to these types
of events.

Figure 4. Event Monitor & Event Merger Gauges

Probes were also attached to the environment to
periodically sample resource utilization of the GeoWorlds
application and competing background activity. This
information was subscribed by the Software Surveyor
Coalescer, which also subscribed to a subset of the
application events. These event streams were woven
together to associate resource utilization, URL access, and

22

GeoWorlds service activity, creating a timeline of script
progress (Figure 5).

Figure 5. Coalescer Gauge with Mapper Interface

Finally, information produced by the Coalescer over
several successful and unsuccessful script executions was
used to make a first-order approximations to the
application’s normative behavior under particular
environmental and scripting assumptions.

Figure 6 shows the cumulative CPU activity of a
particular script over time for successful and unsuccessful
executions of a particular script. Executions under similar
conditions, while not identical, tend to be similar, with
failure having a very distinctive pattern. The objective of
this is to determine statistically what the application can be
expected to have accomplished in the way of service
execution and URL accesses after certain amounts of time
and resource consumption. These would in turn be used to
parameterize future gauges that would warn when
insufficient progress was being made based on previous
experience.

GW CPU Use Scatter Plot

0

500

1000

1500

2000

2500

3000

3500

0 100 200 300

Time (5 sec intervals)

C
PU

 U
se

SUCCESS

SUCCESS

FAILURE

SUCCESS

75% Load

Figure 6. Historian Gauge

Monitoring technology will be widely used only if its
use is easy. For Software Surveyor, this equates to the
processes of placing and activating probes, setting up the
event distribution infrastructure, getting gauges to
subscribe to the events emitted by the probes on the
application, and providing convenient viewers for the
gauge output.

Mechanically, probe placement is easy. JBCI probes
can be placed into Java bytecode using a GUI that presents
information about the application's classes and allows the
insertion of standardized probe code into the bytecode. At
present, there is a small, but extensible, library of such
standard bytecode probes (since not many people want to
actually write bytecode). Some of the Java core classes
(particularly those associated with communications) have
had probes inserted; to use these probes, all that is
necessary is to link in the modified classes. Users with
special needs (and access to application source) are
welcome to write their own probes taking advantage of
existing event distribution facilities. Environmental probe
use simply requires knowing the process(es) to be
monitored. A more complex issue is determining where to
place probes. In the example described above, this
required going through the application's documentation
and source directories to determine how to draw
component boundaries and to identify the communications
mechanisms used by the application. In next year's
version of Software Surveyor we plan to experiment with
the use of architectural models to aid in the process of
identifying where to place probes. (see Open Issues and
Next Steps).

Setting up the event infrastructure is easy. One or more
SIENA event servers are started to disseminate events
signaled by the probes. In addition, each Software
Surveyor gauge uses a Web server to make gauge results
available.

As with probe placement, getting the gauges to
subscribe to the proper set of events has an easy
mechanical component and a more difficult modeling
component that will be dealt with next year. Subscribing
to events requires simple calls to the SIENA infrastructure,
identifying the events of interest to the particular gauge.
Determining which events to subscribe requires
knowledge of the kinds of events that might be signaled by
the probes monitoring the application(s) of interest.
Again, see Open Issues and Next Steps for a sketch of the
anticipated model-based solution.

Finally, gauge output is readily viewable anywhere via
HTTP using standard browsers.

7. Open Issues & Next
steps

Probe Infrastructure Improvements. Over the next
year, we plan to improve the performance, coverage and
flexibility of the probe infrastructure.

The Java-based AppliProbes are about as efficient as
they can be, but the current EnviroProbes are inefficient
because their use of the facilities of the Windows Alerter
mandates a needless process switch in order to emit SIENA

23

events; this will be rectified. Depending on the level of
abstraction, an application may emit thousands of events
per second. This places an excessive load on the event
distribution layer, particularly if events are being
subscribed over a WAN. We are working with the SIENA
developers and the DASADA Event Infrastructure WG to
develop a caching scheme that will allow events to be
batched and transmitted in a group. This is more
complicated than it sounds, since simple batching until a
given number of events are collected may result in
unacceptable delay in delivering events. Thus,
transmission must be timed as well as batched. Further,
because different subscribers may consume events at
different rates, batching may be forced to use the lowest
batching factor and therefore become useless. We will
also add the ability to focus the attention of probes on
areas of interest within the application. The notion of
“focus” is discussed further below, but from a
performance standpoint, the intent is to improve
performance by reducing the number of events collected.
This is essential, since no matter how fast the event
distribution infrastructure is made, it will be possible to
generate enough events to overwhelm it.

Coverage will be improved by better support for third-
party probes and gauges and convergence toward a
common event schema. Probes implemented in other
languages can be called via JNI from Java probe stubs, and
probes to monitor applications in other languages are
supported by SIENA’s Java and C++ interfaces. Events are
currently encoded in XML by many DASADA projects,
but every project uses its own schema. A decision was
made at the start of the project to defer the definition of a
standard schema until more experience was obtained; a
first cut at a common schema will be made in the next
year.

Adding programmatic interfaces to the probe
infrastructure will increase flexibility. This will allow
activating/deactivating probes and dynamic probe
placement to expand coverage of an application as it
evolves. The next version of JBCI will support on-the-fly
probe insertion into running programs (without any source
code access) to support dynamic focus - evolving JBCI
into a more fully capable Probe management tool.

Focus. Focus is the ability to concentrate attention on a
particular aspect of the system being modeled. Focus has
several aspects.

First is presentation; limiting the amount of information
that is presented to a user so that the information presented
can be used more easily, in essence trying to eliminate
information overload. However, if the consumer of
monitored information is a gauge, this becomes a non-
issue.

A second aspect of controlling focus is the ability to
limit the kinds and amount of information collected in
order to avoid placing excess load on the event distribution

infrastructure and affecting application performance by
signaling too many events. It is advantageous to
place/activate probes only where needed to fill important
gaps in the evolving model. For example, there is no use
collecting information that cannot be used (either by
gauges or to take corrective action) or that could equally
well be determined statically (e.g., why dynamically
determine that a connection uses TCP/IP if that was
statically bound and not subject to dynamic change).

A third issue of focus is to address the issue of
incomplete probe coverage. The collection of available
probes determines how accurately an application can be
modeled. Depending on the available types of probes and
their placement, it may not be possible to profile all parts
of a model adequately. Such areas are essentially “out of
focus”, and given the lack of information, they must also
be treated as immutable components. Security constraints
may further prevent certain monitoring, even if the probes
to do so exist. Thus, lack of focus may be involuntary.

In the next year, we will be developing a theory of
focus and mechanisms to change focus. In particular, we
need to be able to describe what is and is not known; lack
of information about an event could mean that the event
did not occur or that it was not in focus at the time it did
occur and hence was not seen. We also need a way to
represent focus in the event schema and in gauge outputs.
Finally, we need to extend the probe management
infrastructure to allow probes to report their focus (if
possible) and to change the focus by inserting/removing
probes, activating/deactivating them, and ordering them to
collect different kinds of information. This in turn will
require a better means of describing probe capabilities
architecturally.

Model unification. Finally, we want to integrate
dynamically collected information with static information
and represent the combination in a single evolving model
of an application’s deployment and behavior. We
anticipate using xArch [3] for this purpose. In xArch, a
distinction is made between the model of a family of
systems and a specific instantiation of a member of that
family. Not only would this provide a convenient
modeling and display framework, but would enable a
number of existing architectural analysis tools to be
applied to dynamically gathered and modeled information.
Both probe placement and event subscription assume
knowledge of the general structure of the application and
the kinds of events that a probe is capable of monitoring.
Both appear to be amenable to simplification through the
use of architectural models of the application (should such
models exist). As noted above, two levels of architectural
models can provide information about the structure and
behavior of a family of systems and of a specific
instantiation. It appears that there is sufficient information
in these models to significantly ease the process of
determining where to place probes. In the next year, we

24

plan to build a prototype tool to use ADL models to drive
probe placement. Because this tool will then know where
probes have been placed to carry out a particular
monitoring activity, it can also inform the recipient gauges
information about events to which they should subscribe.

8. Bibliography
[1] Software Surveyor Project Homepage, OBJS, 2001.
www.objs.com/SoftwareSurveyor
[2] DARPA DASADA Program Homepage, Defense Advanced
Research Projects Agency, 2001.
 dtsn.darpa.mil/iso/programtemp.asp?mode=340
[3] xArch Project Homepage, UC-Irvine, 2001.
www.isr.uci.edu/projects/xarch
[4] D. Garlan, R.T. Monroe, D. Wile, "ACME: An Architecture
Description Interchange Language," Proceedings of
CASCON'97, Nov. 1997.
[5] Analyzing and Representing Componentware Structure,
David Wells, OBJS, 2001.
www.objs.com/DASADA/WhatIsAComponent.doc
[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable ObjectOriented Software.
Addison-Wesley, Reading, Massachusetts, 1995.
[7] A. Carzaniga. Siena: A Wide-Area Event Notification
Service. University of Colorado Software Engineering Research
Laboratory (SERL). www.cs.colorado.edu/serl/siena/
[8] GeoWorlds Project Homepage, USC-ISI, 2000.
 www.isi.edu/geoworlds
[9] IntelliGauge TIE Plan, IntelliGauge TIE participants, Oct,
2000. www.objs.com/DASADA/Intelligauge TIE.ppt

25

 (A-2) Measures of Success, OBJS Report, October 2000
An early version of success criteria for the project as a PowerPoint presentation.

26

Software Surveyor Measures of Success
David Wells

Object Services (OBJS)
The views and conclusions contained in this document are those of the authors and should not be interpreted as representing

the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government

Kinds of Success

• Software Quality
• Probe & Gauge Coverage
• Gauge Precision
• Analysis Capability
• Task-Specific Evaluation
• Scenario-Based Evaluation

Software Surveyor probes, gauges, and infrastructure tools can
be evaluated at several (increasingly meaningful) levels:

Software Quality

• Supporting software will be externally used by Columbia, WPI, BBN, and
USC/ISI.

• Gauges will be demonstrated in the context of the GeoWorlds demo in May 2001.
• Gauges will be applied to typical bugs reported on the GeoWorlds Bug Reporting

List.

The quality of Software Surveyor probes, gauges, and ancillary
tools can be evaluated through use by outside groups:

27

Probe & Gauge Coverage

• How completely and accurately can the gauges map an application’s
changing configuration?

– a function of the ability to place probes at component boundaries (which is in turn
dependent on the ability to probe in various technologies, collect the required
information at these points, and deal with security restrictions that might detailed
preclude reporting).

– in Y1, we will only capture information within the Java runtime; additional probing
of DDLs and CORBA will be done in future years.

• Given that a complete configuration graph may be impossible to construct,
how well can the gauges identify and address uncertainty in the graph?

• Is the level of completeness and accuracy that can be achieved for a
configuration graph useful to an administrator or user?

Probes and gauges can be evaluated by how well they perform
their intended task.

Gauge Precision

• Between components within processes (fine grain - narrow scope) & between
processes (coarse grain - wider scope).

• The process by which the connection was made
– identity of the entity(s) that created the connection (linker, HTTP, CORBA ORB, Trader,

manual, ...)
– arguments used in creating the connection
– source for the arguments (function call, file, …)
– how were “open point” arguments resolved? (i.e., to what values)
– is the connection static or dynamic?
– when was the connection made & modified?

• Whether & how the connection has been used.

The amount of detail that a gauge can provide is an important
measure of the potential usefulness of the gauge, since w/o
knowing how and why a configuration choice was made, it is
difficult to determine if the choice is desirable or how to fix it.

28

Analysis Capability

• Is it possible to match graphs so that corresponding components fill the same
roles in both graphs? I.e., can matching be done preserving component roles as
well as graph topology?

• Is the matching accurate?
• Can matching be performed when portions of graphs are unknown?
• How fast is the matching as a function of graph size? Is it fast enough to be

useful?

Software Surveyor will provide analysis tools to compare
configuration graphs and to match reified configurations to
design specifications.

Task-Specific Evaluation

• Improved diagnostic & debugging for multi-technology distributed software.
Goal = 75% reduction in time to identify configurations and activity patterns.

• Increased ability to evolve distributed software.
Goal = provide 75% of detailed configuration & usage status info needed by
evolution planners.

• Low development & runtime overhead.
Goal = automatic or GUI-enabled insertion & 1% runtime penalty

• Reduced component footprint
Goal = 10-90% reduction in size of component footprints by identifying unused
libraries or portions thereof (applicable only when such excess footprint exists)

Software Surveyor gauges can be evaluated based on how the
information they provide facilitates certain specific software
maintenance and debugging tasks:

29

Scenario-Based Evaluation

• How efficiently GeoWorlds can be installed in different environments and its
services deployed.

• How easily complex information management tasks can be scripted with assured
semantic and syntactic interoperability.

• How reliably the scripts can be executed while maintaining desired quality.
• How dynamically the scripts can be evolved based on resource availability and

requirement changes.
• How efficiently new services can be added to GeoWorlds while maintaining

compatibility

Software Surveyor success will be measured by how well it, in
combination with other DASADA gauges, can improve the
lifecycle behavior of a complex, distributed application. The
GeoWorlds intelligence-analysis application is already in use at
PACOM and improvements to its lifecycle behavior can be
measured against historical data. Specifically:

30

B. Technical Reports
(B-1) Survey of Existing Instrumentation Tools, Paul Pazandak, OBJS
Report, October 2000
A review of Java tools for monitoring applications and their environment as a starting
point for new probe technology development.

31

Instrumentation / Profiling Software
Paul Pazandak

Object Services & Consulting, Inc.

Given the need within the DASADA project for software-based instrumentation tools that
we can use to insert (Java-based) probes, I performed a reasonable scan on the internet
for available systems. Using this list I derived a classification system (hence it could
evolve) to help describe the available systems. We make this available for informational
purposes and for anyone interested in (java-based) instrumentation and profiling
software. If anyone wants to contribute, please forward references/reviews of the given
systems (tools written in other languages welcome). [Disclaimer: As probe tools are
secondary to our contract the reviews are not intended to be comprehensive in nature.]

Classification Scheme
I have divided the tools into the following categories and sub-categories:

• Environmental - (or application-external) these tools instrument an application
without any application-specific code alteration through indirect means.

o OS / JVM level - a special case whereby the underlying OS is
instrumented

o External Application (Non-OS) level - these tools provide application-
external means to probe the application, such as instrumenting the
communication path by use of a web proxy

• Application-Internal - Tools which enable one to instrument the application
directly.

o Source Code level - Tool supports instrumenting of the source code
o Bytecode level - Tool supports instrumenting of the byte code / binaries.

In general, these tools do not supply probes, rather they provide the ability
to instrument given that they enable one to edit bytecode.

o Canned/closed systems - The differentiation here is that these vendors
provide a canned tool to instrument. That is, a constrained ability to
instrument applications with their probing code, not yours. These tools
come with visualization tools tool.

other categories??
[Some systems fit into multiple categories.]

Java-based Systems/Tools
Environmental

External Application

32

• NetCool - Micromuse - COTS - Large suite of software monitors
and testing tools.

• RMON - AdventNet - COTS - Network Monitoring

JVM

• Jinsight - IBM AlphaWorks - ROTS - instrumented JVM
• eTective - AverStar - COTS - instrumented JVM. Apparent

ability to target specific components & points of interest. Support
for Visibroker CORBA, COM based applications, and some web
servers.

Application-Internal

 Source Code

• JavaScopeNASun Microsystems - Discontinued/Unavailable -- Provided tool to
instrument application and browser to view resulting data. Appears that it would
instrument everything, no control over instrumentation techniques, location, or
ability to add probes.

 Bytecode (ROTS unless otherwise noted) Each provides at least a basic ability to
modify java bytecode.

• The JavaClass framework (version 3.3.3) - FU Berlin
• JOIE: The Java Object Instrumentation EnvironmentNA- Duke.edu
• BIT: Bytecode Instrumenting ToolNA - Colorado.edu
• Binary Component Adaptation for JavaNA- UCSB.edu -
• JTrek - (COTS) Compaq
• CFParse - IBM AlphaWorks
• Jikes Bytecode Toolkit - IBM AlphaWorks - I found this to be the most full-

featured (albeit largest as well) bytecode editor

 Canned Commercial Tools

• JProbe Java Performance Tools KL Group Inc. - A suite of performance
analysis tools.

• NuMega DevPartner® Java™ Edition Compuware - Canned application for
application profiling. Doesn't appear to support user-defined probes or probe
placement

• OptimizeIt!

33

C++

Environmental : Application-Internal

 Source Code : Bytecode

• EEL: An Executable Editing Library - Wisc.edu - Solaris-based
• etch - Washington.edu x86 source code
• Instrumented Connectors - Teknowledge - WinNT. Supports modification to the

in-memory version of the program (no modification of the binaries on disk).

NA - Does not appear to be an active project / tool

The views and conclusions contained in this document are those of the authors and
should not be interpreted as representing the official policies, either expressed or implied,
of the Defense Advanced Research Projects Agency or the U.S. Government

34

(B-2) Probe Architecture & Functionality, Paul Pazandak, OBJS,
December 2000.
A categorization of probe capabilities, architectural forms, and implementation options.

35

Probe Architecture & Functionality
Paul Pazandak, Object Services & Consulting, Inc.

While probes are not the focus of the DASADA contract, they are the unseen enablers.
And while we need not glorify them, we need to respect them, to worship them, and to
understand the role they play -- without them gauges are just news reporters
without news. While there are no really interesting research issues to solve here -- the
probes require yet another intermediary infrastructure -- the important goal becomes
interoperability. To begin with, then, we need a shared understanding of what a probe can
be, its functionality, and its operating environment. The purpose of this exercise is simply
to elaborate on the variables so that those interested can think about the functional and
architectural design choices, as well as to seed a discussion so we don't have to deal with
massive code changes (or at least reduce the changes necessary) at integration time.

While not mandated, it is assumed because of the significant benefits (and some mention
of it), that a probe management infrastructure will be used. While this may dictate at least
a few of the design decisions (e.g. such as the notion/use of probe stubs), several
decisions remain -- such as the division of responsibility between the management
infrastructure and the probes. Other decisions are more probe-centric, relating to control
of output generation, probe placement, and invocation.
[Note that at a given level in the tree if alternative choices are listed they appear with bullets, if the level
lists subcategories then no bullets are used.]

• Probe Type - Two probe related types: probe stubs and probes.

Self-contained Probe - The probe is inserted directly, and multiple probes
at one insertion point require each to be inserted independently of each
other (one after another).

Insertion - When is the probe installed

 Static (e.g. compile time / load time)
 Dynamic - If tools permit. It is possible to support dynamic

probe insertion and removal, though the degree to which
this is possible is constrained & dependent upon the
programming language. In Java, if the class being modified
has no current instances or has not been loaded yet, then
runtime modification is straightforward. If class instances
exist then more complex memory-based tweaking
techniques will be required (e.g. as used by interactive
debuggers like Visual Cafe). Dynamic insertion and control
are simplified greatly by the use of probe stubs.

36

Execution - Execution order is determined by relative placement
of probes in the flow of control

Probe Stub - One or more self-contained probes plug in to a probe stub.
This facilitates runtime probe insertion and removal. Only the probe stubs
need to be inserted into the application code. At runtime, one or more
probes can be associated with a given stub using a registration API. When
the stub is invoked, it in turn invokes each of the registered probes. This
approach also enables a potential flow of data between a set of registered
probes. Issues regarding data flow between probes and data flow between
gauges are addressed in the Other Issues section. How the stub
determines what data (e.g. parameters, local/global state) to pass to each
probe, and how it passes the data must also be addressed.

Management - some process needs to manage the list of 0+ active
(and inactive) probes associated with a stub

 Local Management - Stub is aware of and manages the list
of probes that are registered with it (the stub has a
management API which supports probe registration). When
invoked, it locally manages the execution of the registered
probes.

 Management Facility - The stub calls out to another
facility when invoked and that facility in turn controls the
execution of probes registered with that stub

Execution (if 2+ probes) - When more than one probe is
registered with any given stub, execution order and data passing
must be addressed (different execution orders may produce
different results).

 Independent / Parallel - the registered stubs are executed
in parallel/independently (this would appear to be
acceptable as long as the probes do not modify
application/environmental data)

 Dependent / Series - the registered stubs are executed in
some defined order (esp. necessary if the probes modify
application/environmental data)

Stub Insertion - When is the probe stub installed

 Static (e.g. compile time / load time)
 Dynamic - if tools permit

Probe Insertion - The stub facilities runtime insertion and
removal.

37

• Probe Existence

Lookup - How do probe data consumers locate the probes they are
interested in?

 Static Binding - Gauges and other consumers simply assume that
the probes they are interested in exist and are running

 Dynamic Binding - Consumers need to lookup and potentially
cause the activation of the probes. Runtime binding is required.

Advertisements - It is possible that probes advertise themselves, e.g. in a
lookup service. This assumes that one can describe in an accurate way the
probe, what it is monitoring, and it's capabilities. It also requires a facility
for ads.

 Offline - Advertise for use & insertion
 Runtime - Advertise that they are running and available

• Probe Security Issues - Can anything register to get data from a probe? What if
the data is classified or needs to be protected?

• Probe Behavior - Probes may be designed for several different types of tasks.

Data Examiners - The range of data that the probe monitors. The events it
generates may change based upon the data content.

 None - The probe simply executes & does not inspect any data
(e.g. used to report that a method has been called)

 Parameters - The probe inspects parameters passed into the local
state (method)

 State - The probe inspects the global state of the application
 Environment / External - The probe inspects environmental or

other application external data
 Runtime configurable - What the probe inspects may be altered at

runtime (controlled either directly via the probe or via a
management facility)

Data Passers - The probe may pass data available to it out to its
consumers. The format of the data passed is a separate, but related, issue.

 Parameter - The probe passes out some subset of the parameters
passed in to the local method in which it is installed

 State - The probe passes out some subset of the (global) state
available to it

 Environment / External - The probe passes out some subset of
the environment

38

 Runtime configurable - What is passed out by the probe is
runtime configurable

Data Manipulators - The probe or possibly its consumers which it has
sent the data to alter some subset of the data (the types listed above). The
probe needs to ensure that changes are propagated correctly

 Runtime configurable - What is modified is runtime configurable
• Probe Management - Overall control of the probe, e.g. controlling whether it is

active or inactive.

Self-managing - Regulating the probe requires direct interaction with it
for all management features (via a probe management API)

Centrally-managed - Regulating a probe requires interaction with a
management facility.

 Pull (polling) - The probe polls the facility for control information
 Push - the facility updates the probe via the probe's management

API

Divided - Management is divided between the probe and a management
facility (non-overlapping)

• Probe Execution / Placement

Execution -

 Control Flow - Probe is inserted into program code & naturally
executed based upon the flow of control of the application. The
probe will have access to local state, method and class state, and
any global state.

 On Demand - Probe is not in any flow of control, and is executed
only on demand (when invoked). Exact placement will determine
the application state that these probes have access to (e.g. class and
global state).

 Event Driven - Probe, like a gauge, registers for events and is
invoked when those events arise. Exact placement will determine
the application state that these probes have access to (e.g. class and
global state).

Placement (Specification) - How is probe (stub) placement specified?

 Descriptive Language - Some means to accurately describe this
information should be used (e.g. such as a probe placement
specification language, or extended ADL).

39

 Manually - An alternative is to simply manually place them, but
this is a more limiting solution since they will need to be manually
placed in each successive version of the instrumented application.

• Probe State - A probe may have a persistent state it wants to maintain

Stored/Managed Locally (by Probe) - The probe manages this state

Managed Externally - Another facility maintains the state for the probe

• Probe Output

Data - The probe generates data / events reporting information it has been
programmed to generate. Options include who the information is sent to,
who sends it, how it is sent, when it is sent is, and in what format.

Listeners / Registrants - The list of recipients for broadcasts from
a probe

 Management Facility - A management facility manages
the list of registered listeners

 Probe-managed - The probes manages the list

Delivery - Who delivers the data to the consumers

 Management Facility - The probe sends the output to a
management facility which then sends it to all registered
consumers

 Probe-managed - The probe manages which consumers
receive data (and possibly their scopes of interest)

Transmission - If probes send events synchronously to their
consumers it can affect performance, and even stall an application
if the consumers are not available. Of course, this may not always
be possible -- e.g..if it is a probe stub sending data to a probe
which modifies the data, then it must be sent synchronously so the
data can be updated before application execution continues.

 synchronous
 asynchronous

Timing - Controlling when the probes output the data they have generated

 Autonomous (every time they are invoked)
 Controlled (e.g. off/on) - We can control data output by activating

or inactivating the probe
 On/Off State Stored locally - The probe locally stores its

activation state

40

 Calls out to management facility - Before any execution
the probe checks another facility for its activation state

 On state-change only - The probe only reports differences
(requires that it has access to historical data, whether locally or
remotely maintained)

 Constraint-based - Output is determined based upon constraints,
either internally or externally dictated.

 Internal
 External - e.g. a management facility
 Runtime Configurable - the constraints can be altered at

runtime by consumers, the probe itself or some other object
 Pollable (pull) - The output is retrieved via polling of the probe

(suitable when the probe is not otherwise executed by natural flow
of control)

Format - The format of the data output by the probe

 Static - Preset
 Adjustable (e.g. based upon specific event or consumer)
 Externally formatted - output to another consumer which then

formats the data as required for its intended recipients (essentially
this is the same as static)

APIs - Given the functionality mentioned above it is certain that both the
probes/probe stubs and the management infrastructure will have APIs for
configuration/control. Both programmatic and GUI-based interfaces could exist,
enabling code-based and direct user-based control of these objects.

Other issues

• Probe Event/Data Correlation - How does one relate events generated by
different probes as belonging to the same unit of work / user / etc? This is more
complex when the system is multi-user and/or multi-threaded.

• Homeless Probes - Not all probes may have an instrumented home -- a foreign
application into which they are embedded. For example, environmental probes
which provide information which is needed before an application is started (e.g.
"Is the car on a drivable surface? Does the car have safe tires installed? Is there
a bomb attached to the car?"). In such situations the probes may exist in
specialized applications built just for them.

• Namespace / Probe placement specification language - To register presupposes
that gauges know how to describe the probes whose events they are interested in,
and how to request that specific probes be installed & activated.

• Probes vs. Gauges - What is the difference between a probe (if stubs are used)
and a gauge? Gauges register for and consume XML-ized events from probes. Do
probes and probe stubs communicate with other probes using XML-ized events,
or higher level Java object representations? Some different perspectives:

41

o Efficiency - Of course, if probes have to parse XML it will be slower than
passing java objects, especially if all probes/stubs are in the same local
process.

o Pass by reference - If a probe needs to modify data, then pass by value
(e.g. XML events) complicates things a bit.

If probes never modify data, we could potentially view probe stubs as probes, and
then view probes as gauges.

The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the U.S. Government

42

(B-3) ProbeMeister: Distributed Runtime Software Instrumentation,
Paul Pazandak and David Wells, 1st Int'l Workshop on Unanticipated
Software Evolution (USE), Spain, June 2002
Abstract: Dynamically deployable software probes facilitate ad hoc runtime application
monitoring and troubleshooting. Using the latest features of Sun Microsystems' JDK 1.4,
we have built a prototype system called ProbeMeister that can attach to multiple remotely
running applications, and effortlessly insert software probes to gather information about
their execution. This information can be used to effect changes within the running
applications to recover from unanticipated failures, or to improve their operation. While
ProbeMeister is useful during software development and testing, its advantages are better
realized after the software is up and running at the users' sites.

Presented at the 1st Int'l Workshop on Unanticipated Software Evolution (USE) 2002, Spain, June 2002.

43

ProbeMeister
Distributed Runtime Software

Instrumentation
Paul Pazandak and David Wells*

{pazandak , wells@objs.com}

Object Services & Consulting, Inc. Baltimore, MD

Abstract
Dynamically deployable software probes facilitate ad
hoc runtime application monitoring and
troubleshooting. Using the latest features of Sun
Microsystems' JDK 1.4, we have built a prototype
system called ProbeMeister that can attach to multiple
remotely running applications, and effortlessly insert
software probes to gather information about their
execution. This information can be used to effect
changes within the running applications to recover
from unanticipated failures, or to improve their
operation. While ProbeMeister is useful during
software development and testing, its advantages are
better realized after the software is up and running at
the users' sites.

1 Introduction
Software probes enable the monitoring
of running applications. Current probe
tools are primarily designed for software
testing: developers insert probes into
their code or underlying OS during
testing to emit data to help locate
bottlenecks, memory leaks, bugs, or to
visualize code coverage, etc. Probes of
this kind may also be left in an end-user
version of an application for bug
reporting: if users encounter problems at
a later date, the log files generated by the
probes can be sent back to the software
vendor for analysis. Both types of uses
require skilled programmers to place and
compile probes into the application and

* This research is sponsored by Defense Advanced Research
Projects Agency and administered by the US Air Force
Research Laboratory under contract F30602-00-C-0206. The
views and conclusions contained in this document are those
of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of the
Defense Advanced Research Projects Agency or the U.S.
Government

to determine the corrective actions to be
taken once the probe data has been
gathered and analyzed. Required
changes are made and the software is
recompiled again.

Our goal in developing our own
instrumentation tool was to produce a
technology suitable for distributed
reconfigurable component-based
software - potentially widely-distributed
applications whose components are
loaded on demand. Such systems are
difficult to extensively test prior to
deployment, partially because their
environment is often immense (think
Internet scale) and constantly changing.
Moreover, the components may be
developed by separate companies and
typically evolve independently of each
other, increasing the probability that
problems will arise.

To probe these kinds of systems, our
tool would need to be able to connect to
running applications and deploy probes
to each of the distributed components,
then gather up all probe output for
runtime tool-based analyses. In
conjunction with other tools, required
changes would be made without
recompiling or restarting the
application1.

 Using the latest features of Java JDK
1.4, we have built ProbeMeister, our
second-generation instrumentation tool
capable of deploying probes into
remotely running Java software.
ProbeMeister instruments Java bytecode,
and works without needing to copy
supporting code libraries to the remote
machines. Probes can be deployed and
removed at will into any running Java
application, remote or local.

1 Imagine needing to modify, recompile, and restart a vital
army tank subsystem during battle.

44

ProbeMeister is being developed as part
of the Software Surveyor project [x]
within the larger DARPA DASADA
program [xi], the goal of which is to
develop technology to model, monitor,
and manage dynamically composed and
evolving systems.

2 Overview of ProbeMeister
ProbeMeister facilitates the
instrumentation of a distributed running
application with software probes2. It
accomplishes this in part by
manipulating the in-memory
representation of the running
application. A key capability of
ProbeMeister is that its extensible set of
software probes can be inserted or
removed at any point while the
application is running. A second key
capability is that it supports the
instrumentation of multiple remotely
running applications. Both are necessary
for monitoring evolving, distributed
applications; since the application’s
connectivity and components may
change during execution, it is essential
to be able to insert and manage probes in
multiple remote components
simultaneously.

 Prior to developing ProbeMeister,
we developed the Java Bytecode
Instrumentor (JBCI). JBCI is a static
bytecode instumentor. It requires a
multi-step process of loading a class off-
line into JBCI, deploying and
customizing the selected probe(s),
saving the modified class, and then
restarting the application. Removing a
probe requires similar steps. What we
found was that once we knew exactly
where we wanted to deploy all of the

2 ProbeMeister also supports the dynamic creation of new
classes and complete redefinition of existing classes.

probes, the process was relatively quick.
However, we also found that probe
placement is an intensely iterative
process unless perhaps the user is also
the developer. For the overall project
that we are involved in it is understood
that a ProbeMeister user is not always
the developer, but perhaps only a skilled
application user having solid but general
knowledge about how the application
works [xii]. When the application is not
performing as expected, either as
determined by the user or by pre-
deployed (possibly even statically
deployed) monitoring probes, task-
specific probes could be deployed to
gather more information to determine if
a given component is not working as
expected. A corrective response could be
to modify specific parameters in the
code to tweak its behavior, or to replace
the component with a more reliable or
more available one.

 As software developers, we felt that
the probe deployment cycle was a
hindrance to ad hoc exploratory probing.
This was the prime motivation for
replacing JBCI with the much more dy-
namic ProbeMeister. In moving from
JBCI to ProbeMeister, we immediately
enjoyed the benefits of dynamic
distributed probe deployment. Not only
did it practically eliminate the
deployment cycle, but also the results
generated by the probes could be seen
immediately without having to restart
the application.

 Supporting easy probe placement by
non-developers requires additional tools
and interfaces having knowledge of the
application's architectural model, that
can suggest probe deployment locations
(or automatically deploy probes) based
upon the problems the user (or the
analysis tool) wants to troubleshoot.

45

Model-based probe deployment is the
focus of another aspect of the Software
Surveyor project, and will be the topic of
a future paper.

 Finally, ProbeMeister has not been
designed to compete with coverage-
oriented optimization tools. These tools
are certainly more efficient at this since
they can statically instrument an entire
application with perhaps hundreds or
thousands of probes to collect
performance data. ProbeMeister is
geared toward targeted placement of
probes to inspect (and possibly effect
changes upon) a running distributed
application. However, the new interfaces
in JDK 1.4 now makes it unnecessary to
deploy any probes into a remote
application to provide coverage
feedback. We just haven't focused on
exposing this capability in ProbeMeister
yet.

2.1 Related Work
Prior to developing JBCI (about two
years ago) we performed a reasonable
search and tool review of several Java
(and C++) bytecode related packages
(see Related Works in section 8 for the
links to the mentioned Java tools). We
were looking for an extensible tool that
would allow us to write our own
bytecode probes and deploy them. While
we could have looked at source code
probe deployment tools, we didn't want
to limit probe deployment to
applications in which we had source
code access, nor did we want the
overhead associated with adding a
recompiling step to the deployment
cycle. We found that some of the
available instrumentor tools appeared to
be closed, and didn't allow one to write
their own probes. These tools were
geared toward software profiling (e.g.

JProbe, NuMega, OptimizeIt!). Some
other tools were close to what we were
looking for but were not extensible, no
longer supported, or too costly (e.g.
JOIE, Jtrek, JFParse). Yet another group
approached instrumentation by
providing modified or pre-instrumented
JVMs (e.g. Jinsight, eTective, BCA).
Finally, the last tools (e.g. BIT, Jikes,
and BCEL) were simply bytecode
editors. For our needs, we thought it
would be more efficient to prototype our
own tool using one of these editors. Jikes
is the editor we integrated into JBCI.

 Even though JBCI worked
reasonably well as a standalone tool, it
could not be used (in the next stage of
the DASADA program) by other tools at
runtime to deploy probes since it only
supported static instrumentation. This
was an obvious and significant drawback
to using JBCI. Thanks to several people
at Sun Microsystems, we were fortunate
to get access to an early version of JDK
1.4 in which the Java debug interface
(JDI) had been extended to support
remote runtime bytecode modification
[xiii]. Using JDK 1.4, we began a
complete re-implementation of our tool
(about one year ago), now called
ProbeMeister.

 We should mention that we did find
some similar tools once we began
implementing ProbeMeister. For
example, we found an interesting
product called RootCause, which offered
a sort of "one-time" dynamic probe
deployment by instrumenting a class as
it is loaded into the JVM. Other similar
products like this exist in the C++ world,
such as NTWrappers, that can modify a
DLL just prior to it being loaded by the
OS. Of course, none of these offered the
kind of flexibility we desired.

46

3 ProbeMeister Architecture
In this section we present a high level
view of the ProbeMeister architecture. In
the lowest layer, ProbeMeister has a
Virtual Machine (VM) Manager that
accepts or initiates connections with
other JVMs via the JDK's JDI interface.
Connection behavior is enabled and
configured by the targeted application
through command-line arguments to the
Java interpreter -- the application may
initiate the remote connection (as a
client) to ProbeMeister (running in a
separate JVM), or it may begin its
execution and allow ProbeMeister to
initiate the connection (acting as a
server) at some later time. In either case
the targeted application requires no
additional code as the underlying JDI
extensions manage the connection to
ProbeMeister. Using the JDI interface,
an application like ProbeMeister can set
breakpoints, subscribe to events (e.g.,
class loading, method entry and exit,
etc), modify methods, and even create
new classes ones on the fly.

 If the application initiates the
connection to ProbeMeister, the
connection is established before the core
JDK classes have been loaded, and
therefore also before its main() method
is invoked. This enables probes to be
deployed before any of the application
code has been invoked. It therefore
allows the probes to capture the
application's entire behavior from the
beginning. When the connection to the
application is opened, ProbeMeister
stops the remote JDK's execution prior
to loading of any of the application's
classes. This enables the user to
instrument any of the core JDK classes
(such as java.io.File to monitor file
access) and therefore capture all
application activity. The user could also

Figure 1. ProbeMeister Deployment
Scenario
schedule probes to be automatically
deployed as the application's classes are
loaded.

 While having each application
connect to ProbeMeister is convenient,
we feel that it is an unreasonable
constraint. ProbeMeister should be able
to be activated on-demand, as needed.
JDI-specific Java interpreter command
line arguments allows an application to
accept a remote connection at any point
during its execution. Using this
approach, a ProbeMeister user (or
external tool) may request a connection
to an application by specifying its
address and port (as defined in that
application's command line arguments).
After a connection is established
ProbeMeister may be used to deploy
probes.

 Once an application is connected to
ProbeMeister it is assigned a set of
components: a Connection Manager that
manages the communication with the
remote application; a Probe Manager
that controls the creation and
deployment of probes; and, a
Configuration Manager that provides
control to deploy or remove several
probes (a probe configuration)
simultaneously.

47

 Finally, in the highest layers,
ProbeMeister provides a user interface
as well as programmatic interfaces so
other tools can control it (locally or
remotely). The following describes each
of the connection-specific components in
more detail. Figure 1 shows the
architecture of ProbeMeister in a typical
deployment scenario.

 In the depicted scenario,
ProbeMeister is connected to four
remotely running Java Virtual Machines
(JVMs) that make up a given distributed
application. Probes that have been
inserted, when invoked, emit descriptive
events to the Siena Distributed Event
Server [xiv] event bus3 for remote
delivery to interested consumers. The
emitted events are consumed by a
separate external system (tools under
development) that analyzes the events,
generates user consumable output (status
or warnings), and may also feedback
into ProbeMeister by dictating further
probe reconfiguration. Of course,
ProbeMeister can be used for manual
user-driven monitoring and analysis. For
this, we have built web browser-based
HTML and XML user displays that
collect and categorize probe events, and
display event details4

3.1 Communication Manager
When a connection is established
between the VM Manager and a remote
application the connection is assigned to
a communication manager. The
Communication Manager manages the
connection with a distributed application
or component via the JDK 1.4 JDI
interface. It provides the routines for

3 Siena is the event bus for many projects in the DASADA
program.
4 Probe event content may include probe location, invocation
time, stack traces, user-assigned values, and method
arguments, for example.

accessing the remote classes, modifying
the classes, and monitoring the state of
the JVM. All calls affecting the remote
JVM pass through this component.

3.2 Probe Manager
The probe manager controls the insertion
and removal of application probes.
Probes may be inserted when a class is
first loaded, before any of its methods
are invoked, or at any point after that.
Insertion involves loading the chosen
class' Java bytecode from its class file,
modifying the selected method by
inserting the probe-specific bytecode,
and writing out the modification to the
remote JVM using the JDI API call:
 VirtualMachine.redefineClasse

s().

 ProbeMeister currently uses the
Bytecode Engineering Library[xv] to
modify Java bytecode5. To understand
the minimum cost to deploy a probe, it
takes on the order of 20 milliseconds to
create a basic probe, modify the
bytecode, and invoke
redefineClasses()on a small locally
running application. It took an average
of about 250 milliseconds to deploy the
same probe on the same application
running in Baltimore with ProbeMeister
running in Minneapolis6. This has been
more than adequate to date given that we
have created on the order of no more
than tens of probes per remote
application.

 redefineClasses() takes as an
argument the entire modified bytecode

5 We switched from using IBM's Jikes because of licensing
constraints (only evaluation licenses were available), and
because it was no longer being improved
6 We found that it takes several minutes to define a new class
which is a concern to us, but we have not yet studied this
issue in detail.

48

of the class. Once invoked, it replaces
the class definition in the remote JVM.
However, only new invocations will
execute the new version of a modified
method; currently running invocations
will run to completion using the older
code. And while the JDI specification
allows for considerable changes to the
bytecode (e.g. new methods, new
attributes, completely redefined class,
etc), it is up to the individual JVM
implementations. At this point, Sun's
JVM implementation only supports
method modification. Once
ProbeMeister modifies a class, since the
modifications are transient a copy of the
modified class bytecode is retained and
used as the basis for any further probe
insertions or deletions. A detailed
description of the supported probe types
is presented in a later section.

 While ProbeMeister's Probe
Manager has been designed to support
the management of heterogeneous
(multi-language) probes, thus far we
have focused exclusively on supporting
dynamic (or runtime) Java bytecode
probes. Runtime probes are inserted
while the application is running, while
static probes are inserted when the
application is offline. Runtime probes
are transient by default, and are lost once
the application terminates; static probes
are persistent by definition. To make
runtime probes persistent, the in-
memory modifications need to be saved
back to disk in Java classfile format. The
modified classfiles can replace the
original classfiles, or be stored
separately (however, the configuration
manager eliminates the need to do this,
as described in the next section).

 Finally, while ProbeMeister
maintains a list of inserted probes for
each JVM, the Probe Manager is also

capable of automatically identifying all
probes that have been previously
inserted (whether statically or
dynamically) by parsing and relatively
quickly examining a method's bytecodes.
This mechanism is also used to validate
external configuration files to ensure that
they accurately reflect the current set of
inserted probes in a given instrumented
version of the application.

3.3 Configuration Manager
While the act of placing probes is quite
straightforward, it would become tedious
if one had to redefine and redeploy
probes each time ProbeMeister
connected to the application -- for each
remote component. For this reason we
implemented a probe configuration
manager. The Configuration Manager is
responsible for tracking and recording
all probe deployments to each
application. The current configuration
can be viewed and saved (to XML-based
configuration files) at any point. Once
saved, a configuration can again be
viewed, and also reloaded and reapplied.
Reapplying a configuration causes all
probes to be reconstructed and then
deployed to the selected application.

 A second use of configuration files is
to define probe sets that target specific
activities or parts of the application (e.g.
file access, network traffic, etc.). Using
these sets, one could load and monitor
the output from one probe set, then
deapply the set (which removes
deployed probes) and reapply another
set.

3.4 User Interface
The graphical user interface (see Figure
2) provides access to all of the features
described above. Virtual machines
(applications) waiting to attach to

49

ProbeMeister are announced at the
bottom of the display. As stated, the user
may also initiate a connection (using the
menus) to a remotely running virtual
machine. Once connected, the user
resumes the virtual machine's execution.
Each tab in the display represents a
different remote virtual machine running
a separate component or application.
This figure shows two applications that
ProbeMeister is connected to. The first is
a remotely running GeoWorlds[xvi] client
application, the second is a service
component used by the client.
GeoWorlds is a central part of the
software testbed within the DASADA
project because it is a distributed
component-based application that
dynamically assembles itself on-demand.

 The interface lists all of the
application's classes that have been
loaded (the core JDK classes have been
filtered out using the controls at right).
The add() method has been instrumented
with a simple probe -- this probe outputs
a user-provided string to the
application's console. From the list of
classes one can also see a class that
ProbeMeister has dynamically deployed
(called OBJS_Breakpointer) into the
remotely running virtual machine.
ProbeMeister automatically deploys this
class into each attaching JVM to control

breakpointing (methods belonging to
classes in a remote JVM can only be
invoked at breakpoints).

 Probes are inserted by dragging a
probe from the list of probes onto the
desired method. Most probes require
some configuring and present displays
for customization. The probe icons are
used differentiate between deployed and
undeployed probes, and simple probes
and probe stubs (described later).

 The Gauge Deployment Requests list
illustrates how external tools may
suggest deployment locations within
ProbeMeister. These tools may also
automatically deploy probes without
user intervention. This interface is only
present when requested (and is the
subject of a future paper on Software
Surveyor).

3.5 Other Interfaces
ProbeMeister provides access to its
functionality through local and RMI-
based programmatic interfaces. As seen
in Figure 2 and discussed briefly above,
Gauge Deployment Requests are sent
over RMI to ProbeMeister. These
external software gauges consume the
events emitted (over the event bus) by
deployed probes, so when gauges are
first activated they suggest or auto-

50

deploy (via deployment requests) the
probes required to monitor the targeted
activity.

4 Probes
ProbeMeister provides a Statement
Factory to generate bytecode probe
definitions on the fly. Probes are defined
like recipes where the ingredients are
Java bytecodes. Defining a probe recipe
requires identifying the series of calls to
be made to the Statement Factory. Each
call adds one or more Java bytecodes.
While several probe recipes are
provided, others can be added to the
library by extending the
BytecodeProbeInterface. Probes can also
be constructed in an ad hoc manner by
directly calling the Statement Factory
via the programmatic interface.
Furthermore, the Statement Factory can
also be extended with more functional
bytecode building blocks. The following
example illustrates how the simple
PrintStringProbe class creates bytecode
using the Statement Factory and inserts
it into a specified method (defined in a
bytecode location - bLoc).

[a] StatementList sList=

BytecodeMgr.createStatementList(bLo
c);

[b]StatementFactory.createPrintlnStmt(
sList, userStringToPrint);

[c] SimpleProbe simpleProbe = new
SimpleProbe (probeID,
probeDescription, probeType, sList,
bLoc);

[d]BytecodeMgr.insertProbe(simpleProbe)
;

Initially [a], a new structure
(StatementList) is created that will hold
(and validate) the probe-specific
bytecode. In [b], the call to the
Statement Factory's
createPrintlnStmt() generates bytecode
that outputs the specified string, and then

inserts the custom bytecode into the
StatementList. In [c], a new simple
probe wrapper is created (it knows how
to deploy simple probes). It is passed a
unique probe ID, a probe description, a
probeType (PrintStringProbe), the
StatementList, and the bytecode
location. Finally, the probe is inserted
into the targeted method. Once this is
done, redefineClasses() may be called
to propagate the update to the remote
JVM.

 ProbeMeister defines two types of
deployable probes: simple probes and
probe stubs. Simple probes are self-
contained units of code. While they may
call out to other methods owned by the
application, they do not require any
more probe-specific code to function.
The current set of predefined simple
probe recipes include a probe that
outputs a user-defined string (discussed
above), one that outputs the method's
argument values, another that calls a
specified static method, and a similar
probe that calls a static method using
introspection wrapped with exception
handling. Simple probes may output
information to the console of the remote
application (such as argument values), or
modify method state, for example. But,
without supporting code, a probe cannot
emit events. This is one motivation for
probe stubs.

 As there is only so much one can do
with a probe in a single method, we
found a need for a probe that could be
divided in two: we call them probe stubs
and probe plugs. A probe stub, like a
simple probe, may perform intra-method
manipulations such as modifying
argument values or outputting data to the
console. However, a probe stub is also
able to perform more complex tasks
because it calls out to one of an array of

51

probe plugs. For example, two of our
pre-defined stubs (probe recipes) include
one that emits status information, the
stack trace, a user-defined string, an
event name and sub-event name; the
other also emits the set of method
arguments. This information can then be
passed to a plug for further processing,
and even return values back to the stub
(e.g. to effect state changes).

 Unlike probe stubs, which are
written in Java bytecode, probe plugs
can be written in Java. This really
simplifies the writing of the bulk of the
probe's functional code. A probe plug
provides specific functionality that may
perform any task. We currently use
probe plugs to emit data from the probe
stubs over the Siena event bus. Stubs
are matched to plugs by their method
signatures. When a user selects a probe
stub to install, the Probe Manager
returns a list of all compatible probe
plugs from the ProbePlugCatalog. The
user then selects an appropriate plug
based upon its functional description.
Like simple probes and probe stubs, new
probe plugs can be added by registering
them in the appropriate persistent
catalog.

 When stubs will be used, either the
remote virtual machine must include the
associated probe plug classes in its
classpath, or ProbeMeister can port the
probe plug classes to the remote virtual
machine on the fly. The latter of course
is preferable, as otherwise the plug code
will need to be copied to each remote
computer. However, if a considerable
number of classes need to be deployed it
may require significant overhead7.

7 The Siena Distributed Event Server is composed of 54
classes, making it more practical to copy the jar file to each
site. However, it is likely that we could modify it to reduce

 Finally, the Statement Factory
validates the structure of each probe
(only the Statement Factory can insert
bytecode into a StatementList) and uses
a wrapper mechanism to ensure that the
probe can be removed once deployed.

5 Issues
There are a number of issues and
limitations that are worth mentioning.
First of all, as previously discussed,
simple probe output is constrained to the
remote JVM's console window because
the probe code is executing within the
context of the remote application. This is
useful for certain types of debugging and
monitoring, especially if the application
is local. But, if the application is
distributed, there must be a way to
collect the probe output from each
remote JVM. Using probe stubs and
supporting code a probe can emit events
external to the remote host. As
previously mentioned, we currently
support this capability using Siena. The
events generated by the probes are
published to a remote Siena event server
and subscribed to by our user-oriented
Siena event monitor (and other Software
Surveyor gauge tools), which then
displays the event data in a web browser.
Other event publication schemes are also
possible. For example, one could use the
Java JDK 1.4 Logger API to emit probe
events in the form of log messages via
TCP streams to a remote collection
system.

 Another issue is probe control.
Currently probes deployed in the remote
application can only be disabled by
removing them. One potential alternative
would be to simply modify the probe
bytecode by inserting a jump instruction

the number of classes significantly, thus making it possible to
deploy on the fly.

52

to bypass the probe code. This is slightly
more efficient than removing the entire
probe and reinserting it at a later time.
Another alternative would be to port a
new class that contains a vector of
Boolean switches. Each probe would
then check its own on/off value in this
vector prior to executing. ProbeMeister
would modify the values in this vector
by remotely invoking a method to alter
the on/off values. However, (unlike
method modification) object invocations
using the JDI API require that the
remote application be at a breakpoint.
We have yet to measure the overall cost
of this approach. Although, given that
remote probe removal is on the order of
250 milliseconds it has yet to become a
major issue.

 While using the JDI API, we've
noticed three important constraints. First,
to modify a method ProbeMeister needs
a copy of the complete bytecode of the
class because critical pieces found in a
.class file are not defined at the method
level. This includes, for example, the
bytecode boundaries in which a given
attribute is valid, as well as the definition
of exception handlers. Unfortunately, we
have learned that the JVM cannot
synthesize class definitions, so at this
time ProbeMeister must have access to
copies of all of the bytecode it may edit.
Second, there is no straightforward
method to reliably cause a breakpoint to
occur in the remote JVM. While one can
arbitrary set a breakpoint using the JDI
interface, the problem is knowing where
to set the breakpoint. We have created a
simple mechanism that allows
ProbeMeister to cause a breakpoint at
anytime (using our Breakpointer class as
described earlier), but only if the
application attaches to ProbeMeister at
startup (because we know where the
application will begin execution!). We

have not yet looked for a reliable way to
port the Breakpointer class to the
targeted application if ProbeMeister
attaches to a running application.
However, ProbeMeister needs to set
breakpoints so it can invoke methods on
remote objects.

 The final constraint is that when an
application connects to ProbeMeister
there is no way to identify it. We have
implemented a mechanism that will read
special ProbeMeister-specific parameters
that can be included in the command line
(this requires ProbeMeister to invoke
methods in the remote JVM to access
these values). Preferably, such metadata
would be made accessible via the JDI
API prior to accepting a connection.

 Another limitation is that our
supplied probes cannot modify a
method's arguments when the symbol
table is not included in the class (a
compile-time option can strip a class of
its symbol table). However, a probe
could modify these values by cross-
referencing the original source, though
we have not tried this. Not having the
symbol table limits what a probe can do
in a running application, for better or
worse. Still, if needed, it is possible to
access a method's local variables by
statically instrumenting the source code.
For example, we have instrumented the
source code of some core JDK classes
(e.g. java.io.File and java.net.URL) with
special probes that provide access to
more details than otherwise currently
possible with our bytecode probes.

 With respect to performance issues,
we have noticed that while probe
deployment is relatively quick, remotely
deploying new classes appears quite
costly – on the order of 100+ seconds.
We have yet to investigate this issue to
determine the source of the problem, but

53

we did notice significant bandwidth
usage.

 Like any other code writing, it is
important to extensively test new probes
as poorly written probes can easily cause
catastrophic effects (the creation of the
Statement Factory was intended to
minimize such problems). And while the
inclusion of exception handling in a
probe addresses some of these concerns,
it is still quite easy to write damaging
code if one is not careful.

6 Plans
We are working to extend and enhance
ProbeMeister. As mentioned earlier,
probes need a distribution infrastructure
to emit events. As the Java JDK 1.4
Logger can send logged data to a remote
location, this will be a lightweight
alternative to using Siena. If the
application is already using this
mechanism, then we could also merge
and remotely route application output
and probe output together. Furthermore,
the Logger API defines logging levels
that we plan to extend to control which
probes emit events. We plan to explore
this approach to turning on and off
probes, in addition to the current
"deploy, remove, and redeploy"
approach.

 Another feature we are exploring is
to remove the limitation requiring local
bytecode access so that a method can be
modified, and probe installed. This
requires that ProbeMeister have access
to a copy of every classfile in which a
probe might be deployed. To alleviate
this, we plan to deploy helper classes
into the remote JVMs that will load and
transmit (back to ProbeMeister) the
classfiles to be modified. This will also
guarantee that the classfile used by the

application is the same version that
ProbeMeister is modifying.

 Currently, ProbeMeister is limited to
blind instrumentation. That is, it does not
display the source code, or allow the
user to specify probe location as a source
code line offset. We plan to extend our
user interface to support the ability to
specify the location of a probe similar to
how breakpoints are placed within a
debugger interface.

 Finally, we plan to define some
default probe configurations for
addressing common monitoring needs,
such as network activity, binding
failures, and file access. This would
allow a user to quickly isolate certain
types of problems, after which they
could manually deploy probes into
specific components given what they
had observed.

7 Acknowledgements
Many thanks to Sun Microsystems Java
CAP team for providing access to, and
support of, JDK 1.4 (special thanks to
Jim Holmlund for his responsive support
in debugging JDI-related issues). Thanks
also to the reviewers for their invaluable
feedback.

8 Related Work
This is a partial list of related Java-
specific tools.
Bytecode Modifiers
• JOIE: The Java Object Instrumentation

Environment , http://www.cs.duke.edu/ari/joie/
• Geoff Cohen (Duke/IBM), Jeff Chase (Duke),

and David Kaminsky (IBM), Automatic
Program Transformation with JOIE in
Proceedings of the 1998 USENIX Annual
Technical Symposium

• CFParse ,
http://www.alphaworks.ibm.com/

• BIT: Bytecode Instrumenting Tool ,
http://www.cs.colorado.edu/~hanlee/BIT/index.html

• Jikes Bytecode Toolkit ,
http://www.alphaworks.ibm.com/tech/jikesbt

54

• Bytecode Engineering Library ,
http://jakarta.apache.org/bcel/

Commercial Probe Deployment Tools
• JProbe Java Performance Tools

http://www.klgroup.com/jprobe/
• JTrek ,

http://www.digital.com/java/download/jtrek/index.html
• NuMega DevPartner® Java™ Edition ,

http://numega.com
• RootCause -Java and C++,

http://www.ocsystems.com

Research Probe Deployment Tools
• NTWrappers - C++ -

http://www.teknowledge.com

Pre-instrumented JVMs
• Jinsight ,

http://www.alphaworks.ibm.com/tech/jinsight
• eTective ,

http://www.averstar.com/products/etective.html
• Binary Component Adaptation for Java (BCA),

http://www.cs.ucsb.edu/oocsb/bca/index.html

9 References
[1] Software Surveyor Project,

http://www.objs.com/DASADA/index.html
[1] DARPA DASADA Program,

http://www.darpa.mil/ito/research/dasada/projects.
html

[1] D Wells and P Pazandak, “Taming Cyber
Incognito: Surveying Dynamic / Reconfigurable
Software Landscapes”, In Proc of 1st Working
Conference on Complex and Dynamic Systems
Architectures, Dec 12-14, 2001, Brisbane,
Australia.

[1] Sun Microsystems JDK 1.4 Java Platform
Debugger Architecture,
http://java.sun.com/j2se/1.4/docs/guide/jpda/jdi/in
dex.html

[1] A. Carzaniga, D.S. Rosenblum, and A.L. Wolf
"Design and Evaluation of a Wide-Area Event
Notification Service". ACM Transactions on
Computer Systems, 19(3):332-383, Aug 2001

[1] Bytecode Engineering Library,
http://jakarta.apache.org/bcel/

[1] M Coutinho, R Neches,et al, GeoWorlds: A
Geographically Based Information System for
Situation Understanding and Management, In
Proc of 1st Intl Workshop on TeleGeoProcessing,
May 6-7, 1999, Lyon, France.

55

C. Software Specification Sheets
(C-1) OBJS ProbeMeister
(C-2) OBJS Gauge Tool Set
(C-3) OBJS EnviroProbes
(C-4) OBJS XML2Java

56

(C-1) OBJS ProbeMeister

ProbeMeister
Category(ies): Probes/Gauges

Institution/Company: Object Services and Consulting, Inc. (OBJS)

Description:
ProbeMeister is a tool for dynamically inserting into, and subsequently
managing, probes in running Java programs. Both GUI and API interfaces
are provided. Features are:

• Dynamic code insertion - The application can be
running when the changes are made. Changes can be
made at any point during the execution. Changes go
away when the application terminates.

• Simultaneous Connections - ProbeMeister can
monitor and instrument several applications
simultaneously.

• Distributed Insertion - ProbeMeister can connect to
and modify remotely running applications.

• Configuration Management - ProbeMeister can
record all of the modifications, which can then be
automatically re-applied at will

ProbeMeister represents a complete redesign of OBJS’ existing
Java ByteCode Instrumentor (JBCI) which it replaces.

For more information: Paul Pazandak - pazandak@objs.com

Assumptions: Java 1.4

Status: Research Prototype

Availability: DASADA researchers may obtain download access by
contacting Paul Pazandak

See also: www.objs.com/DASADA/ProbeMeister.htm

57

(C-2) OBJS Gauge Tool Set

OBJS Software Surveyor Gauge Toolset
Category(ies): Probes/Gauges (Dynamic Analysis & Tuning, Event

Monitoring)

Institution/Company: Object Services & Consulting, Inc. (www.objs.com)

Description: Gauge ToolSet:

The current set of gauges include Coalescer, EventMonitor,
EventMerger,StackTracer, Historian, and Mapper.

Coalescer merges streams of separately collected eventinformation and
renders this information on a timeline chart, performinglimited aggregation
of events by time interval.

EventMonitor categorizes events by type and renders HTML-and XML-
based displayable summaries with expandable detail.
EventMonitorincludes a web server to support browser-based access. It can
be configuredto subscribe to any subset of, or all, published events.

EventMerger, an extension of EventMonitor, performs eventunification
prior to rendering. Event streams may report on the same activities,but at
differing levels from within the application. EventMerger identifiesrelated
streams of events by analyzing event content (e.g. stack traces,event
type/subtype, component names and other attribute values). This canhelp,
for example, to view the overall activities of each probed componentin the
application.

StackTracer converts streams of application events intoa trace of program
execution and emits an XML representation. The eventsemitted by a probe
may be generated via several different execution pathsinvolving the probed
method. This gauge provides insight into frequencyof invocation along
each path. It can also be used to filter out paths(and therefore events) so
that particular application behavior can be isolatedfor further analysis.

Historian archives execution traces and computes statisticsof behavior.

Mapper provides a visualization of the time-based relationshipsbetween
events of an application.

Formore information: Contact Us.
Paul Pazandak
David Wells

Assumptions: Target application can be written in any language. Version1.0

58

requires event dissemination via Siena. The Software Surveyor
ToolSet v1.0 is implemented in Java 1.3 and has been tested
under Windows 2000.

Status: Active Research Prototype

Availability: It is currently distributed as part of the Software
SurveyorDemo v1.0 Distribution.

See also: http://www.objs.com/DASADA/

59

(C-3) OBJS EnviroProbes

OBJS Software Surveyor EnviroProbes
Category(ies): Probes/Gauges

Institution/Company: Object Services & Consulting, Inc. (www.objs.com)

Description: EnviroProbes call upon operating system utilities togather
information on system status and resource usage. They
monitor system-wideCPU utilization, application CPU
utilization, and TCP bandwidth. They generateevents at
discrete configurable intervals.

Formore information: Contact Us.
David Wells
Paul Pazandak

Assumptions: EnviroProbes is currently available only on Win2000
andWinNT. Events generated use the Siena Event Dispatcher.

Status: Active Research Prototype

Availability: It is currently distributed as part of the Software
SurveyorDemo v1.0 Distribution.

Seealso: http://www.objs.com/DASADA/

60

(C-4) OBJS XML2Java

XML2Java
Category(ies): General Support

Institution/Company:

Object Services & Consulting, Inc.

Description:
Provides the ability to directly convert XML to first class Java
objects (with application-specific behaviors). Potential use is
to convert XML-based events to Java objects for application
consumption.

For more information: Contact Us. Paul Pazandak, David Wells

Assumptions:
Java 1.1+

Status:
Currently implemented in Lark XML Parser, but if there is
interest we will embed it in the parser chosen for this project
(as long as licensing permits and source code is available)

Availability:
TBD, see Status. Soon after a project parser has been chosen.

See also: NA

61

D. User Manual

(D-1) ProbeMeister User Manual

ProbeMeister 2002 version 1.0/version 1.1

Copyright 2001-2003 Object Services and Consulting, Inc. All Rights Reserved.

See OBJS_license.txt for licensing. If file is not found, do not use this software. For licensing questions
contact us at pazandak@objs.com or ford@objs.com.

www.objs.com

Thank you for your interest in ProbeMeister. ProbeMeister is well-documented in the sense that this
paragraph contains a description of it, anything beyond that is a futuristic dream. ProbeMeister enables the
insertion of new code (probes) into running distributed Java applications. It has a number of predefined
probes that can be used. Once a probe is inserted into a method of a class, it will be executed the next time
the method is invoked. Probes can also be removed.

Probably the best way to understand ProbeMeister is to try it out. Run the demo below…now! A paper is
also available on ProbeMeister on request.

Running the demo

A demo is included. The primary thing to note is the .bat file so you can understand how a "target VM" is
attached to ProbeMeister. The demo is started by invoking the runSimpleExampleClient.bat. The main of
SimpleExample2 calls printPing2(String, String, int) -- so this is the method you should instrument if you
want to see something happen.

Getting Started:

1. The first thing to do is start ProbeMeister. The example will not run if
ProbeMeister is not running. There are ways around this, but then also caveats.
See the Help… under Virtual Machines menu to get more on this.

2. Now, start the demo - invoke runSimpleExampleClient.bat
3. The first thing to notice is that "Add Available VM" button is now enabled. Click

"Add Available VM" to have ProbeMeister attach to the JVM (target VM)
running the example.

4. All of the initial classes of the target VM are displayed, up to but not including
the main class. Then the target VM is halted by ProbeMeister. This break allows

62

you to instrument core Java classes before the application starts. Hit Resume
button to load the remaining classes.

5. At this point ProbeMeister will load the main, do some stuff including reading
any command line identifiers so we know what application we've attached to (yes,
this is a 'defect' of the current JDK API, but hopefully it will improve in the next
release). Wait 5-10 seconds for this to happen.

6. Now, you can see all of the loaded classes. Use the filtering options (e.g.
"Exclude JDK classes") at the right in the ProbeMeister GUI to filter the list of
displayed classes. One probe has already been installed (if all went well) in case
you were wondering how it got there. If you see less than four classes, hit the
filter button again, it will refresh the view. (Note: you cannot instrument inner
classes at this time - their names include a '$').

7. The example should have opened it's own GUI, so you should try it out & see
what is displayed in the console before you insert any probes.

Probe Insertion:

1. Select the main class SimpleExample2, it should expand to display its methods.
2. Select instrumentMe() method. Drag a method from the list on top of this method.

The simplest of these is PrintString. As it suggests, it simply prints a user
supplied string in the console of the target VM.

3. Select PrintString probe. Enter a string to print in the dialog (e.g. "Got here…").
Hit OK. A new entry for this probe should now appear under this method in the
list. Select the new entry to see a description of this probe.

4. Now, to see if to worked, bring the SimpleExample2 gui and console to the front,
then press a radio button. You should see your string printed to the console of
SimpleExample2.

5. To remove a probe, right-click itand select "Delete Probe" from the pop-up menu.

That's it. There are two types of probes:

• Simple probes. They are self-contained, including all the code they need to
execute.

• Probe Stubs & Plugs. Stubs are not self-contained. They make a call out to
another class/method (a plug). The plug contains the body of the code to be
executed. This is particularly useful if the code is used by several types of probes,
or if it is so complex or long that you don't want to have to define it all in
bytecode! While simple probes and probe stubs must be defined in bytecode,
plugs are just normal methods in compiled java classes.

Stubs are paired up with plugs based upon their signatures. Stubs and plugs define their
signatures, and ProbeMeister automatically finds appropriately matching plugs, and asks
the user to select one (there may only be one choice for some stubs).

63

Stubs and simple probes need to be registered in the ProbeCatalog.txt (located in the jar file). Probe plugs
must be registered in ProbePlugCatalogDB.txt. You may add new plugs easily. See the example source file
(PLUG_GeoWorldsEventsToSiena.java) in the libraries directory. It shows how one can easily write probe
plugs (there is a lot of superfluous code -- it's quite easy to write a plug). All one must do is to create an
entry in the catalog, and then create methods that start with "PP_" in the class. The methods must match at
least one signature of a probe stub, otherwise it cannot be called by a stub.

Probe Types

Here's a description of the available probes.

• PrintString - prints a user-supplied string in the target VM console
• CallMethod - calls the specified STATIC method in the remote VM. No

exception handling, so the method may throw an exception if an exception occurs
in the static method called, or if an exception occurs in trying to call the method --
e.g. it wasn't really a static method. Use "Validate Method" in the probe dialog
box (displayed when adding the probe) -- it'll make sure that the method exists &
is static.

• Stub_CallMethod - Calls a probe plug having a simple no argument list. By
default it calls a simple plug that emits a string describing the method that called
it.

• PassMethodArgsStub - Like the above stub, but (should) pass the methods
arguments to the plug to be printed. May need some work.

• BasicEventStub - Emits an event to be consumed by the Siena Distributed Event
Server. You need to have Siena server running. To monitor the emitted events (
remember they are only emitted when the probe code is invoked), run the event
monitor which brings up a browser window. It autorefreshes about every 10
seconds. The emitted events are categorized by event name - a name you provide.
The stub actually calls a plug that emits the event.

• PassMethodArgsEventStub - Like the above stub but it passes all of the
instrumented method's arguments within the emitted event. Obviously, if an
argument is an object it will be passed as a representation of that object.

• PassObjectEventStub (new) - Like the above, but it passes 'this' of the current
method. It will break if the method you instrument is a static method I would
guess. The receiving plug, if customized to manipulate a given object type, can
extract all sorts of information from the object. See
PLUG_GeoWorldsEventsToSiena.java which has a plug that accepts a generic
object, and extracts data only if it's a GeoWorlds ServiceProxy object.

• CallMethodByName - Unlike the CallMethod probe, this probe calls by Java's
introspection wrapped with exception handling. So, if the specified method
doesn't exist, the called method throws an exception, or even if the invocation of
the specified method causes an exception, the exception will be handled
(exception information will be sent to the console of the tart VM should an
exception occur). The benefit is that the invocation of the probe will not have any
adverse effect on the execution of the instrumented method.

64

Other Notes

Connections:

To remove an application, select "Disconnect" and then "Remove". The remote application remains
running, and any probes deployed will remain until the application terminates. If the application was started
as a server (see the Virtual Machines help menu in ProbeMeister), then you can always reconnect at a later
time & modify the probes that you deployed.

Note that you can add several applications to ProbeMeister!!

Probe Configurations:

See the Configurations help menu in ProbeMeister.

Remote Control ala RMl

Everyone likes remote controls, so we added one. See the runTestRemoteRMI.bat and
TestRemoteRMI.java files. This capability allows a remote application to deploy probes, or to suggest
locations for a probe to be deployed via a Gauge Deployment Request. More information on request!

Notes

Send questions to me: pazandak@objs.com

ProbeMeister outputs general messages to the console. It also outputs detailed messages & errors in XML
in diag.pml. Send this file to me if you need help debugging a problem.

65

E. Demonstrations & Tech Transfer
(E-1) IntelliGauge TIE - Using Gauges Throughout the Software
Lifecycle to Improve Internet Information Systems, IntelliGauge
Project Team, October 2000

Abstract: Description of a group effort to apply a suite of DASADA technologies to
monitoring, diagnosing, and tuning a loosely coupled Internet-based application.

BBN Technologies
Columbia University

Object Services
USC Information Sciences Institute

University of Colorado - Boulder
Veridian

WPI

IntelliGauge TIE

Using Gauges Throughout the Software Lifecycle to
Improve Internet Information Systems

Year 1 Group Plan
October 2, 2000

Participants

66

Hypothesis
Software gauges can:
• Efficiently and transparently monitor distributed, real-world software to collect, analyze,

and disseminate information to Solve configuration and usage problems at all points in
the software life cycle

Approach
• Demonstrate how DASADA gauges can non-invasively instrument a complex real-

world software application (GeoWorlds) that is typical of Internet-based intelligence
gathering, analysis, and planning systems.

• Demonstrate how DASADA gauges can be used to diagnose and assist in the repair of
composition and operational problems throughout the software life-cycle.

• Demonstrate the effectiveness of the gauges by using them to diagnose real
configuration and operational problems as reported by existing GeoWorlds users.

Technology Sharing Plan
There is a potential for overly tight interaction between groups, so we agreed to limit
dependencies to:

– Agreement on key definitions
• events and event posets defined by a FleXML (meta-)Schema
• probes & gauges specified in Acme

– Common infrastructure
• Sienna as common event distribution mechanism
• sharing of (but not reliance on) individual probe & gauge placement tools

– Loose (first year) coupling between different projects’ probes & gauges
• limited first year consumption of other project’s probe & gauge

inputs/outputs
– Common demonstration application with individual “mini-demos” in

scenario-based framework

67

 Producer/Consumer Relationships
TBASSCO (USC/ISI) produces
• Semantic service and data flow description capability

– BBN, Veridian and Object Services use them to describe semantic interoperability
of their services

• Service event protocol specification based on semantic service description
– Columbia/WPI verifies services are conforming during runtime

TBASSCO (USC/ISI) consumes
• Semantic distance metric to measure interoperability

– Georgia provides metrics, i.e., clustering and factor analysis
• Runtime performance to tune architecture

– Columbia/WPI, Object Services, BBN provide performance gauges
• Runtime service quality to select alternative services

– Columbia/WPI provides quality gauges, i.e., size of search result

• Veridian/PSR Produces
– A callable web service for creating GIS products for GeoWorlds
– An update to the Venice application framework for dynamically (re-

)configuring this web service
• Veridian/PSR Consumes

– Nothing in first year

• BBN Produces

– “Abstract Query Engine” “applet/agent” for demonstration with GeoWorlds

– Website wrappability gauges

– Runtime quality assurance content-level gauge

– XML Binding Adapter. Plug’n play XML technologies to dynamically update/ manipulate
ADL XML.

• BBN co-Produces

– Service Contract Language

• BBN Consumes

– Event Language (external interface to Gauge Infrastructure)

– GeoWorlds infrastructure

– Other performance gauges (BBN will be producing 2).

68

• Columbia/WPI Produces
– AIDE toolkit for inserting active interface probes into Java code.
– FleXML toolkit - including Schema templates for defining event vocabularies,

Oracle for publishing new vocabularies, Metaparser for validating and
preprocessing event streams, converter to/from Siena.

– Worklets toolkit for deploying/modifying live probes & gauges, emitting and
coordinating dynamic reconfiguration gaugents.

– Sample probes & gauges for monitoring GeoWorlds protocol compliance.

• Columbia/WPI Consumes
– ISI GeoWorlds infrastructure and protocol specs for main demo.
– OBJS Smart Data Channels for (optional) PDA demo.
– UColorado Siena for transporting FleXML event streams.
– CMU xAcme activity language to ensure FleXML compliance.
– UMass Little-JIL decentralized workflow for worklet oversight.

• University of Colorado Produces
– FIRM probe and gauge deployment infrastructure, which includes installation,

activation, and deactivation
– Siena wide-area event notification service
– Sample probes & gauges for monitoring proper deployment of GeoWorlds

components

• University of Colorado Consumes
– ISI GeoWorlds infrastructure and protocol specs for main demo
– UCI and CMU xADL joint architecture description language
– FleXML toolkit - including Schema templates for defining event vocabularies,

Oracle for publishing new vocabularies, Metaparser for validating and
preprocessing event streams, converter to/from Siena

69

• System Administrators use ConfigMapper, ConfigComparator & ConfigChecker to
diagnose GeoWorlds installation and reconfiguration problems.

• TBASSCO (USC/ISI) use ConfigComparator and ConfigChecker to help end user
Intelligence Analysts to diagnose the sources of suspicious query results and identify
inconsistencies in query construction.

• BBN and Columbia/WPI use ConfigMapper to determine where activity monitoring and
QoS probes should be installed.

• The Event Infrastructure may use XML2Java to map XML-encoded events to Java-
encoded events.

• Gauge Developers may use JBCI to place probes and stubs into applications.

Object Services (Software Surveyor) will produce the following
software that will be used by others:

Software Surveyor consumes the Event Dissemination Infrastructure &
GeoWorlds demo.

Demo Structure
• Illustrate gauge use in several “problem/diagnosis/response” scenarios in 4 distinct

GeoWorlds lifecycle activities
– Deploying/Installing GeoWorlds
– Information Management Scripting
– Script Execution
– Reconfiguring GeoWorlds

• Common demo theme across projects
– Common storyboard across the lifecycle
– Each scenario within a lifecycle activity shows one project’s capabilities
– Individual scenarios will be grouped to show a combined capability

• Equipment assumptions
– LAN or wireless connectivity + T1 Internet access

70

 Service Selector and Job
Listeners

System Job Pool

Job Manager

Default
Job Pool

Service Wrapper

Local
Services

RMI
Services

Socket
Services

JavaSpace
Job Pool

CORBA
Job Pool

JavaSpace
Services

CORBA
Services

Client Layer

Job Pool Layer

Service Layer

Entry Flow
Event Flow

Asynchronous
Service Invocation

Architecture

GeoWorlds Test-bed Application

Document Analysis
Information Visualization

Information Organization

Information
Spaces Web

Information
Gathering

Document
Collection

GeoWorlds Test-bed Application • Large component-based system in use at PACOM
– PACOM and JFCOM are potential outside evaluators

• Framework for adding components
• Geographic Information Systems plus Web processing
• Ops and intelligence uses, e.g.,

– Mapping terrorist bombings
– Locating recurring natural disasters
– Investigating drug trafficking and piracy in various locales

71

Functionality to be Illustrated:
Probes & Gauges in the Software Lifecycle

Existing Software
(From Library of Available

Components)
• ISI – GeoWorlds
• Object Services – SDC
• BBN – Abstract search engine
• Veridian – GIS map layers

Design Time Aids

 ISI

• Gauges to select
interoperable components

• Gauges to determine
difficulty of adding new
components

• Gauges to adapt
architecture to computing
environment

Run Time Aids

 BBN

• Network (bandwidth,
latency) gauges

• Uptime gauges

Columbia / WPI

• Protocol gauges
(partial matching on
event posets)

• Run-time gauge
plugin and modify

Object Services
• Application profiling

gauges and topology
gauges on
configuration,
component usage

• Component
binding

• Dead libraries
• Versioning
• Activity
• Data-driven

bindings

ACME ADL
XML/FleXML

Prospective
Software

(Same Library:
Alternative
Extensions,

Compositions)

Requirements / Capability
Descriptions

 ISI:

• Semantic function and data
descriptions

BBN:

• Architecture requirement documents

Georgia State

• Semantic distance metrics

Lifecycle Scenarios:
1. Installation Time

 Service Selector and Job
Listeners

System Job Pool

Job Manager

Default
Job Pool

Service Wrapper

Local
Services

RMI
Services

Socket
Services

JavaSpace
Job Pool

CORBA
Job Pool

JavaSpace
Services

CORBA
Services

Client Layer

Job Pool Layer

Service Layer

Entry Flow
Event Flow

X User Observes Causes Gauges Do How
Install script fails Expected

component not
found

Config gauge
identifies missing
component

Compare installed
config w/ Acme
spec

Version mismatch

Namespace error

Method invocation
fails

Installation
completes, but
GeoWorlds
doesn't work

Config gauge
identifies use of
different version

Compare installed
config w/ a good
installation

Probes
&

Gauges

72

2. Information Management
Scripting Time

Probes
&

Gauges

?
Intelligence

Analyst

User Observes Causes Gauges Do How
I/O data semantic
mismatch
between
components

Semantic gauges
identify the mismatch
& suggest
intermediate
components to
resolve it

Perform reasoning
on I/O semantics
and find
components that
make a semantic
connection

Syntactic
(interface) non-
compliance
between
components

Syntactic gauges
determine the cause
of non-compliance
and suggest
adapters

Access to library of
converters and
wrappers

GeoWorlds can't
find apropriate
data source

Semantic gauge
subscribes data
channels that meet
requirement

Compare the data
requirement and
channel
descriptions

Dataflow violation
(e.g., pipe output,
page input)

Dataflow gauge
detects mismatch &
suggests a dataflow
adaptor to allow

Access to library of
available converters

GeoWorld script
cannot be
completed

3. Script Execution Time

Probes
&

Gauges

User Observes Causes Gauges Do How
External data
source has
moved,
disappeared, or
become
unresponsive

Connectivity gauge
identifies the broken
connection & finds
new URL or drops
the source

Monitoring request
& response pairs
and comparing
timing with previous
interactions

External data
source has
changed its (XML)
interface

Change monitoring
gauge determines an
XML encoding has
changed

Comparing the XML
Schema used in a
sequence of
accesses

External service
failure causes
GeoWorlds script
failure

Connectivty gauge
identifies broken
connection &
suggests alternate
service

Monitoring request
& response pairs
and comparing
timing with previous
interactions +
knowledge of
service alternates
with simlilar
interfaces

QoS gauge
identifies growth in
result size
Dataflow gauge
identifies the path
through the query
that caused the
increase

GeoWorlds hangs
during script
execution

Script returns
suspicious results

Spam site
introduces flood of
dubious
responses

QoS gauge identifies
aberrant site & helps
build a filter to
eliminate spurious
results

73

4. Reconfiguration Time

 Service Selector and Job
Listeners

System Job Pool

Job Manager

Default
Job Pool

Service Wrapper

Local
Services

RMI
Services

Socket
Services

JavaSpace
Job Pool

CORBA
Job Pool

JavaSpace
Services

CORBA
Services

Client Layer

Job Pool Layer

Service Layer

Entry Flow
Event Flow

Probes
&

Gauges

Brilliant
new

service

User Observes Causes Gauges Do How
Attempt to install
new remote
service fails

Should not
happen -
GeoWorlds will
accept any
service

Users don’t know
how difficult it is to
add a new
service

Mismatch with
GeoWorlds data
and service
specifications

Conformity gauges
measure how well do
I/O data and
functionality conform
to GeoWorlds data
and function
specifications

Check conformity to
document models
and service APIs,
and data and
functional
ontologies. Check if
any wrapper can be
applied

Installation
Completes, but
GeoWorlds
doesn't work with
new service

GIS Data
mismatch with
request

Semantic matching
of components in
reconfiguring the
service

Venice allows the
user to reconfigure
the service remotely
using an ACME
description for the
architecture

Group Evaluation Criteria
• How efficiently GeoWorlds can be installed in different environments and its services

deployed.
• How easily complex information management tasks can be scripted with assured

semantic and syntactic interoperability.
• How reliably the scripts can be executed while maintaining desired quality level.
• How dynamically the scripts can be evolved based on resource availability and

requirement changes.
• How efficiently can new services be added to GeoWorlds while maintaining

compatibility.

74

Technology

Demonstration

Demo Days
June 4-8, 2001

10/15 12/15 2/15 4/15

install
Sienna

installed
GeoWorlds

GeoWo
rlds
wishlist

strawman
 scenarios demo

storyboard
detailed
scenarios

probes +
insertion
GUI

event
model gauges v.1 gauges v.2

completed
demo

Year 1 Schedule

Coordination Mechanisms
• Source code using Source Forge technology
• Effective network of web-based sharing of documents

– BSCW hosted by Columbia
• Develop Architecture for entire system showing group involvement
• Conference calls and email
• ICSE 2001 in Toronto
• Winter PI Meeting
• Face-to-face meetings

– Individual sub-groups only
• Working Demo by May 1st

75

Outside Interactions
• Interaction with other DASADA groups

– Eliminate redundancy
– Propagate developed standards and standards in progress
– Produce schedule for our deliverables

Event “wire
format” and
dissemination
mechanisms

University of Colorado, Teknowledge

ACME
representations
and tool kits

Carnegie Mellon, University of California-Irvine

Probe toolkits or
infrastructures

Teknowledge

Gauge toolkits or
infrastructures

Multiple groups

76

(E-2) Software Surveyor: Dynamically Mapping Untamed Software
Applications, OBJS Project Brochure, June 2001

Abstract: Project overview and description of the status of the tools as of mid-2001.

77

Terra incognita – the unknown territory that
baffled explorers, frightened merchants and
impeded progress. Difficult to know where
you are and impossible to know what to ex-
pect next. Hic sunt dracones – here lurk
dragons.

The power and flexibility of modern software
makes it increasingly a cyber incognita and
the traditional tools of maps (design specs),
surveying and navigational instruments, and
marked trails (descriptions of normative
behavior) are as inadequate in cyber
incognita as they were in terra incognita 300
years ago. Design specs are incomplete,
inaccurate, or inconsistent; software probes
cannot observe all significant events and

techniques to correlate independently
recorded observations are limited; and
descriptions of normative behavior are often
(especially in Web-based, agent, or
survivable systems) described as “best
effort” with no concrete notion of what that
means. Further, the dynamic nature of
many modern applications means that they
are continually reorganizing themselves in
response to changed user demands or
resource availability; the equivalent of Lewis
and Clarke having to deal with rivers and
mountains that changed position every few
hours.

So, if you have ever felt that using and
managing complex, distributed (and often
under-specified) dynamically reconfigurable
software is a bit like walking alone into the
wilderness, Software Surveyor is for you.

OBJS’ Software Surveyor is a profiling
toolkit to dynamically deduce and render the
runtime configuration and behavior of
evolving, component-based software. Infor-

mation is synthesized from multiple sources
and combined and rendered in a variety of
formats and made easily accessible via the
Web.

Software Surveyor
Mapping Untamed Software Applications

Object Services and Consulting, Inc.

Cyber Incognita

Software Surveyor Overview

78

Software Surveyor addresses three distinct
issues:
• What is the application doing?
• What is it supposed to be doing?
• Is it doing what it is supposed to?
This requires probes to collect a variety of
information and an infrastructure to dissemi-
nate it, and synthesis tools to merge infor-
mation streams and make sense of it. Re-
sults of this analysis are aggregated to iden-

tify “behavioral norms” to augment incom-
plete performance specifications. Finally, the
probe infrastructure and behavioral norms
can be used to signal users when the sys-
tem is operating anomalously. Software
Surveyor requires limited prior knowledge of
application connectivity and has the ability to
dynamically deploy probes, allowing its use
with dynamically reorganizing applications
and those lacking complete specifications.

79

Probes
AppliProbes provide information about
events at the application interface and/or
internal to the application. EnviroProbes
uses operating system utilities to gather and
emit information on system status and re-
source use.

The Java ByteCode Instrumentor automates
the insertion of probes and probe stubs into

Java ByteCode. JBCI modifies .class files by
inserting calls to selected probes using se-
lected customizable instrumentation tech-
niques. JBCI can be extended with new
probes and instrumentation techniques. GUI
and programmatic interfaces will be avail-
able. Probes implemented in other lan-
guages can be called via JNI. The next
version of JBCI will support on-the-fly probe
insertion into running programs.

Event Distribution
Events are distributed by the Siena Event
Distribution Infrastructure (U-Colorado).
XML2Java translates XML to first class Java
objects with application-specific behaviors.
Useful to convert XML-encoded events into
a readily manipulable form.

Analysis
Coalescer merges streams of separately
collected event information to create an
event timeline and performs limited aggre-
gation of events by time interval. Stack-
Tracer converts streams of application
events into a trace of program execution and
emits an XML representation. EventMonitor
categorizes events by type and produces
summaries with expandable detail. Histo-
rian archives execution traces and computes
statistics of behavior.

Visualization
Mapper provides a timeline-oriented visuali-
zation of application behavior. StackTracer
and EventMonitor results can be viewed
using any XML-capable Browser.

Implementation & Status
Software Surveyor v1.0 is implemented in
Java 1.3 and has been tested under Win-
dows 2000. v1.0 requires Siena for event
distribution. EnviroProbes is currently avail-
able only on Win2000 and WinNT.

 4.4.1 Principal Investigator: David Wells

4.4.2 Investigator: Paul Pazandak

The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the
U.S. Government .

For more information:

www.objs.com/DASADA

{wells, pazandak}@objs.com

Current Tools

80

(E-3) Software Surveyor: Dynamically Mapping Untamed Software
Applications, OBJS Project Brochure, June 2002
Abstract: Project overview and description of the status of the tools as of mid-2002.

81

Terra incognita – the unknown territory
that baffled explorers, frightened merchants
and impeded progress. Difficult to know
where you are or what to expect next. Hic
sunt dracones – here lurk dragons.

The power and flexibility of modern software
makes it increasingly a cyber incognita and the
traditional tools of design specs, monitoring
software, and descriptions of normative be-
havior are as inadequate in cyber incognita as
maps, marked trails, and surveying equip-
ment they were in terra incognita 300 years
ago. Design specs are incomplete, inaccu-
rate, or inconsistent; software probes cannot
observe all significant events; techniques to

correlate independently recorded observa-
tions are limited; and descriptions of norma-
tive behavior are often (especially in Web-
based, agent, or survivable systems) de-
scribed as “best effort” with no concrete no-
tion of what that means. Further, the dy-
namic nature of many modern applications
means that they are continually reorganizing
themselves in response to changed user
demands or resource availability; equivalent
to Lewis and Clarke having to deal with
rivers and mountains that changed position
every few hours.

So, if you have ever felt that using and
managing complex, distributed (and often
under-specified), dynamically reconfigurable
software is a bit like walking alone into the
wilderness, Software Surveyor is for you.

OBJS’ Software Surveyor is a profiling
toolkit to dynamically deduce and render the
runtime configuration and behavior of
evolving, component-based software. Infor-
mation is synthesized from multiple sources,
combined and rendered in a variety of for-
mats, and made easily accessible via the
Web. Software Surveyor requires limited
prior knowledge of application connectivity
and has the ability to dynamically deploy
probes into distributed applications, allowing
its use with dynamically reorganizing appli-
cations and those lacking complete specifi-
cations. .

Software Surveyor
Dynamically Mapping Untamed

Object Services and Consulting, Inc.

Cyber Incognita

Software Surveyor Overview

82

Probes
Software Surveyor's core technology is
ProbeMeister, a dynamic probe deployment
tool. ProbeMeister manages the dynamic
insertion of bytecode probes into multiple

running distributed Java applications.
ProbeMeister modifies applications at run-
time by inserting customizable bytecode
probes into selected methods. ProbeMeister
can be extended with new probes and
instrumentation techniques.

ProbeMeister provides a remote method
interface (RMI) enabling external appli-
cations to control probe deployment. Probes
implemented in other languages can be
called via JNI.

ProbeMeister also provides configuration
management, so frequently used probe
configurations can be saved & reused.

Model-Driven Probe Deployment
Controlling ProbeMeister is our model-
driven Gauge Management tool. Software
Surveyor's Gauge Manager uses an appli-
cation's architectural specification model to
iteratively determine where to deploy
probes. This helps to simplify the task of
knowing where to probe the application to
monitor what it is doing. .
.

Model-Driven Monitoring

ProbeMeister
•Runtime Probe
Deployment

Ubiquitous
Access

Distributed
Component
Application

Models
•Application
•Gauges
•Probes

AcmeStudio
Visualization

Gauges

Su
rv

ey
or

Se
le

ct
s

Pr
ob

e
Po

in
ts

Probes Emit Data

WebBrowsers

Subscribe

Updates
to

Models

Probes
Deployed

Analysis

Current Tools

83

Once the Gauge Manager has deployed
probes, Software Surveyor's Gauge Analy-
sis Tools consume and interpret the data
emitted by the probes. Gauges have been
built to construct stack traces of remote ap-
plications, merge environmental and appli-
cation-specific information from multiple
probes, and organize and archive observed
events.

Visualization
Mapper provides a timeline-oriented visuali-
zation of application behavior. StackTracer
and EventMonitor results can be viewed
using any XML-capable Browser. Gauges
can be attached to applications viewed in
the AcmeStudio architectural visualization
tool, which can also be used to initiate
gauge selection and deployment.

Implementation & Status
Software Surveyor v2.0 is implemented in
Java 1.4 and has been tested under Win-
dows 2000. v2.0 requires Siena for event
distribution. Software Surveyor is compliant
with the evolving DASADA gauge and probe
infrastructures.

For more information:

www.objs.com/DASADA

{wells, pazandak}@objs.com

This work is funded by the Defense Advanced Research Projects Agency and monitored by the Air Force Research
Laboratory F30602-00-C-0206. The views and conclusions contained in this document are those of the authors and should
not be interpreted as representing the official policies, either expressed or implied, of the Defense Advanced Research
Projects Agency or the U.S. Government .

4.5.1 Principal Investigator: David Wells

4.5.2 Investigator: Paul Pazandak
Object Services and Consulting, Inc.

USA

84

(E-4) Demo Abstract, OBJS Report, June 2002
Abstract: A short description of the 2002 Software Surveyor Demonstration applying Software Surveyor to
the GeoWorlds intelligence gathering system described in the IntelliGauge TIE paper.OBJS Software
Surveyor

Demo Abstract

June 2002

Against a backdrop of the of the IntelliGauge TIE, in which a coherent collection of DASADA
technology is used to model, tailor, monitor, analyze, and repair a geospatial situation
understanding system (GeoWorlds) used at US Pacific Command (PACOM), OBJS will
demonstrate: 1) use of architecture models to determine how/where to probe target applications,
2) the ProbeMeister Probe Manager for runtime insertion and management of probes in remote
and running Java programs, 3) use of the Siena wide area event distribution bus, 4) a collection
of gauges to collate and interpret sensed events, some of which are architecture-model sensitive,
and 5) event logging to support off-line analysis and for use by third-party repair tools.

85

(E-5) White Paper – Dynamic Modeling and Analysis Tools for
Cougaar
 OBJS White Paper to the DARPA UltraLog Program, 2002, Mark Greaves Program
Manager.

Abstract: Description of how Software Surveyor could be used to monitor & debug
distributed agent systems in the DARPA UltraLog Program.

86

White Paper: Dynamic Monitoring and Analysis Tools for Cougaar
David Wells & Paul Pazandak

Object Services and Consulting, Inc.

{wells, pazandak}@objs.com

© Copyright 2002 Object Services and Consulting, Inc. All Rights reserved.

Problem: Both the Cougaar infrastructure and application societies built on it are so complicated and dy-
namic that it is difficult to detect or diagnose problems. Monitoring and modeling are necessary throughout
the lifecycle for development/debugging, deployment, health monitoring, and performance tun-
ing/improvement.

Remote, distributed debugging is needed during development. Many processes send messages to other
processes, but a single debugging environment only lets you see what’s happening “here” – the process that
is sending the message. There is no way to know if the message was received, if the right recipient got it,
what/if any action is being taken by the recipient or whether the recipient has died or been delayed.

The configuration of a deployed Cougaar society (at both the application & infrastructure levels) is the
result of a complex interaction between many different kinds of information created by one or more inde-
pendent actors (e.g., software engineers, administrators, logisticians, enemies) and representing a combina-
tion of application-level objectives, infrastructure-level actions, and outside events. A configuration is es-
tablished by combining static specifications (e.g., available plug-ins & business rules), deployment actions
(e.g., choice of business rules & connections to local defaults), runtime decisions (e.g., the result of a yel-
low pages lookup), and unintentional actions (e.g., attacks and failures). This interaction can be quite com-
plex as the following example shows. Assume that an infantry company is configured to order water from
only reasonable places. The command structure dictates that deliveries must be made by trucks belonging
to brigade support. Localization rules dictate that commodities like water must be bought locally and if
possible from a host nation provider. Purchasing rules dictate that everything must be bought from a sup-
plier on a pre-approved list. When the infantry company deploys, these rules are combined to determine
the set of legitimate water suppliers and shippers. But what if the rules are wrong or in conflict? What if
the brigade trucks did not deploy and are 5000 miles away? Can a plan be made to ship local water using
such trucks? What if a failure causes the only allowable supplier to stop responding? What if one of the
suppliers on the list is captured by the enemy and is no longer acceptable? In each of these cases, it is nec-
essary to identify the set of contacts deemed feasible in the particular deployment, update this dynamically
as the situation evolves, present it in a way that a logistician can determine if the result makes sense, and
track connectivity problems back to their source in the rules/defaults/trades/etc.

Health monitoring is required input for runtime survivability action. Foremost for ensuring robustness is
knowing whether something has failed, if a response is delayed, if there are unexpected loads, etc. Security
monitoring includes detecting with whom agents/nodes are actually communicating, including side chan-
nels as well as through the approved Cougaar mechanisms. If there is a suspicion that a component has
been compromised, can it be monitored reliably and without letting an attacker know that it is being moni-
tored? It is also useful to have sufficient information to allow unsuccessful executions to be compared with
successful ones to identify differences (e.g., new plug-in, change node connectivity or usage, node failure,
or corruption of a node) that might have caused the problem.

Both survivability and performance tuning require information about activity patterns and available re-
sources as inputs to prioritization and resource re-allocation mechanisms. Performance tun-
ing/improvement requires knowing what’s been happening to determine where the most bang for buck is
available. For instance Cougaar societies will be very sensitive to tasking fanout; if a complex task is not
distributed to multiple nodes, insufficient computing power at a single node will be a bottleneck; on the
other hand, if tasks have too great a fanout, communications will become a bottleneck.

87

Desirable Characteristics of a Monitoring System: Support throughout multiple phases of the software
lifecycle and the ability to serve many different monitoring needs under the same umbrella is clearly desir-
able. This will require many kinds of probes to collect execution information about applications and the
Cougaar infrastructure and resource utilization information at both the O/S and network levels. This in-
cludes both information from within the normal Cougaar framework, but also potential side-channels by
which rogue agents could be divulging information.

Since applications are distributed, this information must be able to be combined remotely. This implies a
common event infrastructure through which detected events are collected and a common event schema
which will allow separately collected information to be interpreted in a common form. Events must be
correlated to be useful. While it is easy to order events observed in a single environment, this is of limited
use in Cougaar where many activities span machine (and hence clocking) boundaries. A partial ordering
between events observed across environments (and hence subject to clock skew) can be created using addi-
tional sequencing information such as the knowledge that a message send in environment A precedes a
message receive in environment B, thereby allowing a correlation between event streams.

Finally, it is highly desirable to be able to add monitoring to a running application without having to restart
it. This allows adding new probes and also inserting probes into potentially compromised components af-
ter the suspected compromise, thus ensuring that the probes themselves have not been corrupted. At the
same time, it is clearly impossible to always be collecting all possibly useful information, so it must be pos-
sible to activate/deactivate monitoring based on needs and resources. In essence, we need the ability to
provide generic, low impact health monitoring, with the ability to turn up the intensity of monitoring when
problems are suspected, and then once we’re sure something is not a problem, we want to be able to turn
that monitoring off and move on to something else.

Approach: OBJS’ Software Surveyor is an independent software application that is capable of unobtru-
sively instrumenting and monitoring running distributed Java (and in the future C/C++) applications. The
primary benefits of Software Surveyor include:

• The ability to compose views of the running distributed application describing the application's be-
havior, exceptions, and state. This information is used to render a visualization of the overall ap-
plication, and as input to extensible validation mechanisms.

• Independent distributed dynamic monitoring - a more secure, less compromisable monitoring
technique. Also alleviates the need for a significant persistent internal infrastructure for self-
monitoring.

• Transient instrumentation - Does not increase the footprint of the on-disk application code. When
the application terminates, only the original code remains.

In general, we want a family of generic monitoring tools that output in a common event schema and that
can be accessed via a common event distribution system. This is a big engineering problem which is well
on its way to being solved by DASADA. Use of generic monitoring means that the effort of building the
probes and collection devices can be amortized. Dynamic insertion of probes (and the ability to turn them
off) means that you can focus on the a suspected area or an area of interest without overburdening the sys-
tem. If you collect everything available, you so burden the system that nothing gets accomplished. You
don’t want to embed probes or information-emitting code into each process because that would be un-
wieldy, wasteful and heavy-weight not to mention requiring much co-ordination in order to make sure that
the information from different processes are compatible and able to be correlated. In terms of security,
you’d like to be able to tap the line rather than bugging the phone itself. It makes it much harder for the
intruder to spoof you or to disable your information collecting ability as well as harder to determine if he’s
been identified. Finally we need a family of analysis tools that will map configurations, measure resource
utilization, correlate resources with program activity, track message flow, and detect historical patterns of
behavior. We would expect to use OBJS’ Software Surveyor along with some companion technology from
the DARPA DASADA program. Already extant and in-the-works monitoring components of Cougaar can
be made compatible by holding them to the common event schema and making use of the common event
distribution infrastructure.

88

Technology Base: We begin from a rather substantial technology and design base developed under the
DARPA DASADA program and tested in a TIE monitoring a loosely-coupled, internet-based intelligence
gathering application. OBJS’ Software Surveyor is a profiling toolkit to dynamically deduce and render
the runtime configuration and behavior of evolving, component-based software. Software Surveyor v1.0,
July 2001, (see screenshots) includes probes to collect a variety of information, an infrastructure to
disseminate it, and synthesis tools to merge information streams and create dynamic configuration and us-
age maps. Information is synthesized from multiple sources and combined and rendered in a variety of
formats and made easily accessible via the Web. Aggregated results identify “behavioral norms” to aug-
ment incomplete performance specifications and can be used with the probe infrastructure to signal users
when the system is operating anomalously. Software Surveyor requires limited prior knowledge of applica-
tion connectivity and can be used with dynamically reorganizing applications and those lacking complete
specifications.

The Software Surveyor core is implemented in Java and can interact with probes and gauges in other
languages, so Software Surveyor can be applied to Cougaar. We are currently 60% of the way through
DASADA Phase I, so additional development will occur under this synergistic technology program. We
are working on the following issues for the coming year’s release. By the end of this year Software Sur-
veyor will have been completely re-implemented improving upon ideas expressed in the first version. The
principle features of this new version include a more advanced probe management infrastructure supporting
both simple probes and more flexible probe stubs and plugs, a framework for probe configuration manage-
ment, and framework support for both source code and bytecode probes. Finally, Software Surveyor now
supports dynamic insertion and removal, and runtime control of probes in a running Java application (no
other software that we're aware of is capable of doing this).

Issues: In concert with the core technology provided by Software Surveyor, the primary issues that need to
be addressed include:

• A smooth integration/correlation of dynamically and statically collected information to form a
coherent user-comprehensible picture.

• Context-sensitive “views” of the monitored system to provide information at a granularity of
value to administrators/tools and consistent with their ability to take action. (Only provide infor-
mation that can lead to an action)

• A robust notion of “focus” to allow selective monitoring and presentation.

A smooth integration/correlation of dynamically and statically collected information to form a coherent
user-comprehensible picture is still needed. An architecture description language gives a template for an
application. Once the application is actually instantiated and deployed, more details are filled in. Finally,
during run-time, probes can provide details that were missing from the static information and details about
the functioning of the actual application. The static model also helps determine probe placement.

Just as database architecture recognized the need for different views of the same data for different users, we
need to have different views of the monitored events depending on our security rights and our life-cycle
needs – depending on whether we’re simply monitoring to identify intruders and take a pulse or whether we

89

are zeroing in on a specific problem by monitoring suspect nodes, programs, etc. Both the fish-eye view of
the world from where you are and the helicopter view of the world that shows overall connectivity (the “big
picture”) are required in differing circumstances.

Additional work needs to be done on focus. The first notion of focus is “aiming” – monitoring for
different things at different times. We need the ability to collect different kinds of information in different
scopes at different levels of granularity but need to limit the actual collection to those things actually
helpful to the current need. We are currently implementing a probe management infrastructure to handle
the mechanics of dynamic probe placement/activation/deactivation. The second notion of focus is “clarity
of vision” – since we are not collecting everything, parts of the model/application are blurry (like a near-
sighted person without glasses). The monitoring system needs to present the user with the blurred picture
and the reasons for the blurs. It could be there is no information about a particular process because there
was no information available, because the process isn’t actually running, or because we just weren’t
looking at the information when it was available. Need to answer “What didn’t he know and why didn’t he
know it?”

Objective: Provide independent monitoring and diagnostic mechanisms to the Cougaar infrastructure to
improve the understandability and reliability of Cougaar-based applications. The mechanisms will:

• Identify potential/allowable interactions between application-level agents/nodes
based on specifications, defaults, and initialization/deployment actions.

• Identify actual interactions between application-level agents/nodes based on
runtime monitoring.

• Determine if the observed interactions are allowable based on specs, defaults, and
initializations.

• Create local and system-wide maps of interaction patterns, and identify critical
agents/nodes, choke points, and unused/underused agents/nodes.

• Provide visualization of monitored behavior and a comparison of this to expected
behavior based on specifications.

These identifications, determinations and mappings provide needed inputs to the
survivability mechanisms, policy decision-making mechanism, low-level policy
implementers, and security mechanisms that will allow those mechanisms to make
decisions. All of this must be consistent with Cougaar architectural principles and
security restrictions. The latter is essential, since otherwise the monitoring system
(which, after all is expected to have a clear view of how the system is operating) becomes
a massive vulnerability.

90

(E-6) White Paper – Ensuring the Robustness of Service Discovery
Responses

OBJS White Paper to the DARPA UltraLog Program, 2002, Mark Greaves Program
Manager.

Abstract: Description of how a variety of DASADA tools could be used within the
DARPA UltraLog Program to ensure that dynamic binding of agents in consumer-
producer relationships creates legitimate and survivable configurations with respect to
declarative rules applicable to collections rather than simply individual bindings.

91

Ensuring the Robustness
of

 Service Discovery Responses

Executive Summary
Cougaar Service Discovery based on the Cougaar MatchMaker is aimed at providing
improved flexibility and robustness by allowing agents to discover service providers
based on capabilities expressed in advertisements and service requests (queries). The set
of agents identified in response to such a “binding query” can be used more or less
interchangeably to satisfy the request, allowing load balancing and adaptation in the
event of agent or infrastructure failure. While the individual agents identified as
providing the requested service may be correct, adaptation requires that the set of agents
be sufficiently large and robust that there are enough adequate alternatives and that the
set of alternatives does not degrade subsequent to the initial service discovery attempt,
leaving a requesting agent “high and dry” when it believes that it has fallback positions.

We believe the current plan for Cougaar Service Discovery should be augmented in
several ways to become more robust. First, functional queries should be combined (via
query modification) with extra-functional constraints (QoS and policy constraints) to
ensure that queries result in the best result sets, taking into account all relevant factors.
Second, we believe query relaxation techniques will be needed to locate acceptable
matches when initial queries fail. Third, we believe an efficient scheme is needed to re-
validate and rebind if services do not meet expectations or become unavailable. Fourth,
to ensure that rebinding remains feasible, we believe that the set of potential options
should be periodically revalidated.

We propose a collection of tools (compatible with the Cougaar architecture and time
phased to match the projected Cougaar development schedule) to: (1) use policy
statements to detect binding set inadequacies, (2) identify potential causes of such
inadequacies, (3) suggest fixes, and (4) interact with Cougaar mechanisms to implement
selected remedies.

Background
U*L CONOPS https://docs.ultralog.net/dscgi/ds.py/Get/File-3283/CONOPS-v0.54.doc
requires a high degree of flexibility in creating and maintaining the command and support
relationships that form the basis for all Cougaar agent interactions. The Service
Discovery MatchMaker (MM) currently under development will ultimately make it
possible to create these relationships by “query”, matching requests for services with
advertisements of services that can be provided by the available agents. This will allow
policies in the form of pre-packaged business rules to act as query modifiers (e.g.,
generalized constraints) to situation-specific specifications (e.g., unit location, OpTempo,
command structure). The twin goals are: (1) quick setup for military missions with the
ability to adapt as the military mission objectives change, and (2) greatly improved
robustness of the overall system.

92

Speed and responsiveness are attained because relatively little situation-specific
customization will be required to create or change a logistics planning configuration.
Configurations can then be automatically converted into specific inter-agent connections.
Improved robustness is achieved because capability-based connections and discovery
provide logistics and planning alternatives so that neither: (1) the failure of the Cougaar
infrastructure (e.g., agent or communications failure), nor (2) loss of logistics assets (e.g.,
supply depot blown up), nor (3) change of the logistics configuration (e.g., a unit moves
away from its supply base and must get supplies from elsewhere) are catastrophic.

The Problem
All of the above benefits rely on the assumption that a query results in a suitable
collection of service providers (agents). But what if that is not the case? How could it
happen that the collection of service providers is not ‘suitable’? What could be done if it
did?

To begin with, we assume that the following things work properly (this is not to say that
other checking to ensure these properties is not necessary, just that those tools are outside
our effort):

• MatchMaker correctly evaluates ontology-based queries using weighting functions
specified in the query.

• The ontologies used by MatchMaker are correct.

• Agents that are found by MatchMaker either functionally do what they claim or the
requesting agent can determine functional non-compliance and take corrective action.

In other words, we are assuming that any agent in MatchMaker’s response set will either
be correct or that the requesting agent can detect a problem and ignore a functionally
incorrect agent. Our concern instead is what happens if there is something undesirable
about the set returned rather than with any individual member of that set. The sets could
be poor in several different ways:

• The set is empty or contains only agents with too low a score to be acceptable. In this
case, the binding attempt will fail. The problem could be caused by a logistics
problem (e.g., there is no supplier of truck batteries) or an infrastructure failure (e.g.,
the agent for the part supplier is unreachable).

• Failure to bind may propagate back through a chain of agents, since if an agent cannot
find a service, it may in its turn no longer be able to provide the services it is
functionally capable of and thus would now be an unacceptable choice for some
other agent that had planned to use it. For example, a wholesaling company may be
able to sell both liquids and bulk solids. A military depot requests flour from it. The
wholesaler tries to find a supplier for flour, but is unable to do so, so it is rejected as a
source of flour, despite the fact that it is capable of delivering flour (if it could find
it). The binding failure ripples back from the wholesaler-to-supplier connection to
the depot-to-wholesaler connection. Further, the binding failure was caused by a
parameter (flour) that flowed from depot to wholesaler to suppliers. Tracking this
down on-the-fly will be tricky without automated support.

93

• Some members of the set are functionally correct, but have some other aspect that
makes them undesirable. For example, a water provider may be too far away to be
useful, but an incomplete specification of mode aspects fails to eliminate it. Worse,
what happens if it becomes the top-ranked choice for some other reasons (e.g.,
advertised price), and gets used to the exclusion of a better alternative?

• The set contains too few alternatives to be robust. This causes two kinds of problems.
First, just because an agent satisfies a binding request does not mean that it will be
able to provide the service required of it in a given request during planning. For
example, a warehouse might normally contain truck axles, so binding to it would be
reasonable. However, when a particular request to ship truck axles is made, the
warehouse may be empty. In this case, the requesting agent would like to have some
potential alternate sources. The quality and number of such alternates should be
specifiable by a higher level policy.

• Second, the set size shrinks after the query has been evaluated, leaving too few
alternates. This could happen because of the loss of some of the alternates (e.g., the
alternate warehouses get destroyed, leaving only the primary) or because changes in
some mode aspect of the requestor or alternate providers (e.g., one or the other
moves) makes a previously reasonable relationship become undesirable.

Undetected, the problems outlined above would make an application built on Cougaar
less able to meet the Ultra*Log robustness goals. Uncorrected by automated tools, the
problems would increase the work-factor for administrators and slow down the
configuration and repair of applications, making it impossible to meet the more
aggressive Ultra*Log CONOPS adaptivity and ease of use goals.

The Root Causes
If MatchMaker works properly on correct ontologies, what can cause these problems?

There are (at least) four underlying sources of these problems: incorrect or contradictory
business rules, finding the correct tradeoff between ”precision” and “recall” in query
specifications, insufficient logistics or Cougaar resources, and propagation of constraints.

• Business rules will be used to express policy and constraints in many domains (e.g.,
purchasing regulations, security, product quality). This will require a large number of
rules developed by experts in many domains. Getting this all correct and consistent is
a daunting task. One has only to consider that the FAR and DFARS (which have
been in existence for a long time and cover only contractual issues) are not internally
consistent. Even if the rules are consistent, it is possible that they are too restrictive
for a given situation: this is especially likely in degraded or emergency situations that
the rules do not anticipate. In such cases, a rigorous application of all the overlapping
rules may preclude doing anything at all. Humans can generally find a way around
such problems; Cougaar needs a similar ability to deal with the possibility of
conflicting rules. This would be facilitated if it were possible to know which rules
had been applied and which rules had caused alternatives to be rejected.

• Cougaar uses weighted matching to support “approximate” or “ranked” matches.
This is similar to a problem in the field of “information retrieval”, in which queries

94

are used to identify possibly relevant documents from a (library) collection. A long-
standing problem in that domain is the tradeoff between precision and recall; the
ability to get only relevant documents and to get all the relevant documents. Cougaar
faces the same issue; it is desirable to find all the relevant providers without
introducing irrelevant providers. It is generally accepted in information retrieval that
it is impossible to have perfect precision and recall simultaneously. Finding the right
tradeoff between these two objectives, especially in a dynamic Cougaar environment
where the set of potential providers changes rapidly, will be difficult. Thus, a
mechanism to detect unsatisfactory result sets and tighten or loosen a query is
necessary. This would be facilitated if it were possible to know, going in, what factors
had contributed to the low quality of the result set.

• There may simply not be any (or enough) logistics resources providing the desired
service with the required mode aspects. For example, a logistics robustness policy
might state that there be at least three fuel providers in a theater, but what if there are
only two? It is desirable that this deficit be detected during the matchmaking process
so that either a waiver of the policy can be consciously made or an additional fuel
source deployed.

• Matchmaking queries will be parameterized based on setup information (e.g., the
physical location of the logistics unit represented by the agent) or on information
passed transitively from another service request (e.g., a request by B to A to deliver
truck axles to B causes A to look for a collection of C’s that sell truck axles). Such
(possibly transitive) parameterization is not subject to design-time verification and is
a potential source of any of the above problems. It is a leap of faith to assume that all
this will always work correctly

Nature of the proposed solution.
We propose a set of tools to specify policies related to binding set quality, to determine
violations of those policies, to determine the cause of the violations, and to propose
(re)solutions. All of these tools will be integrated into the Cougaar framework; in
particular, they will interact with Cougaar Service Discovery, Adaptivity Engine, and
Policy Management.

Specifically, we propose the following, integrated into Cougaar:

• Tools for defining and managing policy “meta-rules” describing desired and required
properties of binding sets.

• A representative set of parameterizable meta-rules for common logistics policies as
defined in Ultra*Log CONOPS.

• A tool to apply the policy meta-rules to MatchMaker output to determine if binding
sets violate policies.

• Auditing tools to periodically determine if binding sets have changed to violate
policy. Use of these tools may themselves be policy-driven (e.g., frequency of re-
validation may depend on such things as criticality of the connection and likelihood
of change to the set membership).

95

• A tool to present the various bindings of agents to system administrators so that these
administrators can easily validate the reasonableness of the bindings and interactively
take actions to react to problems.

• A tool to identify potential causes of binding set policy violations and suggest
solutions in the form of modifications to queries, relaxation of rules, or deployment of
additional logistics or Cougaar resources.

Details, Architectural Fit & Technology to Build On
The proposed tools are not intended to be either a replacement for, or a significant
modification of, the planned Cougaar Service Discovery mechanisms. Instead, they are
intended to pick up where Service Discovery leaves off. Note that instead of attempting
to determine if the individual services discovered are adequate (the job of Service
Discovery), we propose to determine if the collection of services discovered is adequate.
This is an entirely different problem, but one that is essential to achieve robustness.

What follows is a list of the individual tools we plan to provide, their fit with the rest of
the Cougaar system, and the technology starting point for each.

Tools for Defining & Managing Meta-Rules: We believe that the meta-rules can be
represented in DAML-S as are other rules, advertisements, and queries in Cougaar
Service Discovery. This will allow us to use existing and planned Cougaar tools for
defining and manipulating the meta-rules. Very little effort will be required here.

Representative Policy Meta-Rules: Ultra*Log CONOPS describes scenario vignettes that
can be used to define a set of such rules for use in testing. We will define rules
applicable to the 2003 test cases.

Applying Meta-Rules to Binding Sets: Rules are predicates on properties of the set. We
expect to be able to use an existing rule engine to apply these rules to the set returned by
Cougaar Service Discovery. In the event this set does not satisfy the rules, an exception
will be raised. This could lead to the application of an automatic repair strategy via the
Adaptivity Engine, administrator intervention to take a corrective action, or simply a
warning to the CSMART console.

Audit Tools: Because of the danger that an acceptable binding set may degrade over
time, it is desirable to periodically re-evaluate such sets. The rule-application tool
described above will be packaged (most likely as either a Cougaar Management Agent or
Rover Agent) to do this. Because service discovery is potentially expensive, policy will
be specified to determine the conditions under which re-evaluation takes place. Our
belief at present is that this policy should take into account the criticality of the binding
being supported (e.g., frequently used connections or connections responsible for highly
critical parts of the logistics plan), the likelihood that the binding set will degrade below
acceptable levels (e.g., a forward depot is more likely to be lost than a CONUS base and
binding sets with many alternatives are more robust than those barely exceeding the
threshold), the load on the Discovery Service (e.g., if the DS is busy making new
bindings, it should not be further loaded with checking), and general infrastructure load
(e.g., communications availability).

96

Administrator Interface: The checker (whether operating at discovery time or as part of
background evaluation) fills the role of a Cougaar sensor. Bindings associated with a
given agent, node, or community, should be viewable graphically and textually. An
administrator (possibly local to the agent, node, or community) will often be able to
detect anomalies that slip past rule checkers. As such, the administrator should be able to
signal exceptions through these tools in exactly the same way as the checking tool itself.

Identifying Causes of Binding Set Problems: This has several levels of sophistication,
each requiring more effort. We anticipate providing these capabilities incrementally in
roughly the order described here. At the first level, the checker will simply identify
which rule or rules were violated. This requires no additional interaction with the Service
Discovery MatchMaker and can be provided immediately. The next step requires
extensions to the MatchMaker, so it will have to be done in conjunction with its
developers. There appear to be three reasons that a binding set is inadequate: failure to
satisfy the binding query, weightings and thresholds that reject otherwise acceptable
response items, and failure to satisfy the business rules that condition the query
evaluation. The ways in which these are identified appear to be different.

• Failing to satisfy the binding query. In this case, the collection of agents whose
advertisements satisfy the query predicate is insufficient. If the query predicate is
complex, it may be difficult to determine why this occurs. Related work done in the
mid-1980’s to mid-1990’s in the database field developed techniques to figure out
what part of a query caused anomalous results by tracking the sizes of intermediate
result sets computed during the evaluation process [work on query modification in
Ingres and System R, work on cooperative response by several groups, work by
Jonathan King and Gio Wiederhold at Stanford on semantic query optimization, and
work on query relaxation by Wesley Chu at UCLA]. Points in the evaluation where
set size either exploded or shrank to an unexpectedly small size (or in the Cougaar
case to below the acceptance threshold) were flagged, with the part of the query being
evaluated at that point being a suspected source of the problem. The system was not
foolproof, but did help with the identification process. This might be able to be
adapted for Cougaar, the principle changes being that Cougaar queries and
advertisements are not relations and that query weighting needs to be considered.
This would require MatchMaker to expose the evaluation order and statistics on the
intermediate results. It would not require any MatchMaker modifications beyond this
increased visibility.

• Weighting and threshold problems. This may be partially handled by the planned
Service Discovery weighting scheme, but the idea is to identify any weighting terms
that are consistently not satisfied (e.g., the highly weighted term “US flagged carrier”
is never satisfied, causing no carriers to be found with sufficiently high weight to pass
the threshold). These should be suspected as flawed or overly restrictive. Again,
MatchMaker visibility is required to determine this information.

• Restrictive business rules. Agents that satisfy the query predicate may be rejected
due to combinations of business rules. If MatchMaker exposed statistics on the
number of potential responses that violated any business rules that fired, it would be
possible to identify potential business rule conflicts or rules whose application might

97

be too restrictive for the situation. These could either be handled by an override
policy or thrown to an administrator via CSMART.

Suggesting Solutions: The information that can be collected above may imply a solution
to a human administrator,. However, the data sets involved may be of such a size as to
make determining such a solution infeasible. We propose to build tools that can make
this easier, and may even allow certain first-level solutions to be automated. Grouping
and ranking the potential sources of binding set inadequacy according to impact and
likelihood would help make sense out of a potentially large information collection.
What-iffing tools could allow checking the effect of a proposed changes to query, rules,
policies, or weighting/thresholds on the binding query result without causing an actual
bind to occur. This would make use of the Service Discovery without changes, but the
originator of the request would be the what-iffing tool rather than an agent trying to bind.
An issue would be managing the load that this creates on Service Discovery, since
massive what-iffing could prevent actual bindings from taking place. If Service
Discovery optimizes queries, the query evaluation plan may not have an obvious
correspondence with the original query (since the optimal evaluation order may differ
from the order in which the predicate was expressed). If this is the case, it will be
necessary to either recreate this correspondence or interact with MatchMaker to cause it
to be exposed. This is a more difficult problem, but the DBMS query modification work
mentioned above resolved this issue, at least in the relational database context.

Implementing Solutions. Once a corrective action is decided upon, whether by a human
administrator or by an automated policy, actions need to be taken. This requires making
some change to the conditions that caused the failure and then re-executing the discovery
attempt. An issue in the re-execution is whether the requesting agent must be aware of
this or whether it can happen transparently. Correcting the causes of the failure naturally
requires connections to other parts of Cougaar. Actions that could be taken include:

• Change the query predicate, weightings, or threshold. This would require interaction
with the requesting agent. As such, an additional interface for agents would likely
need to be defined. An issue is whether the change would apply to only the current
discovery attempt or to all future discovery attempts.

• Change the current policy or override a portion of the policy. An issue is the scope of
the change (does it apply only to the current request, the requesting agent, all agents
of that type, all agents in that community, globally?). This kind of change should be
able to be made by an administrator.

• Deploy (or change the properties of) one or more logistics resources. This requires
reaching outside of Ultra*Log.

• Change (fix) a business rule. This is a heavyweight action and should not be
expected to be made on-line.

Competing approaches
Cougaar does not currently provide capabilities such as those described above. The
Ultra*Log Service Discovery group is not currently discussing these issues. Cougaar

98

Policy Management might specify policies to respond to deficiencies in binding sets, but
would still require mechanisms to detect and categorize such problems prior to policy
application. The Cougaar Adaptivity Engine likewise represents a way in which to
respond to problems but does not itself detect or categorize the problems.

Deliverables Schedule
2003

In 2003, we will be developing tools that allow detection of problems with the original
binding sets created by Cougaar Service Discovery. Determining the causes of problems
will be deferred until 2004. This is for three reasons:

• This allows us to get the basic mechanisms and architectural fit correct before
attempting to be too sophisticated.

• Work proposed for 2003 requires only the ability to examine the standard outputs of
the Cougaar Service Discovery MatchMaker, whereas MatchMaker extensions to
expose some aspects of its internal operations are required for the advanced
capabilities. The Discovery Service is still early in its development and is operating
on a different development cycle than most of the rest of Ultra*Log (having started in
summer). We believe that we are more likely to get significant design cycles with the
Service Discovery developers once their basic capabilities are completed.

• A smaller initial effort allows us to demonstrate an important capability at relatively
low cost with a roadmap toward a more comprehensive capability in 2004 and
beyond.

Specific capabilities to be delivered for integration into the 2003 Cougaar Release are:

• Tools for defining and managing policy “meta-rules” describing desired and required
properties of binding sets.

• Representative policies for the properties of binding sets.

• A tool to apply the policy meta-rules to MatchMaker output to determine if binding
sets violate policies.

• A tool to present the various bindings of agents to system administrators so that these
administrators can easily validate the reasonableness of the bindings and interactively
take actions to react to problems.

• Connection to either the Cougaar Discovery Service or Adaptivity Engine (whichever
is most appropriate) to take corrective actions in the event a binding set is inadequate.
Most responses in the first year will either be simple or will involve administrator
actions.

2004 and Beyond

In 2004 and beyond, we will provide:

• Audit tools to periodically determine if binding sets have changed to violate policy.

• Representative policies to drive the audit tools.

99

• A tool to identify potential causes of binding set policy violations and suggest
solutions in the form of modifications to queries, relaxations of rule, or deployment of
additional logistics or Cougaar resources.

The specific deliverables and schedule after the first year depend on Ultra*Log needs as
discovered over the course of work.

100

(E-7) Report on Demonstrations of ProbeMeister Technology to the
UltraLog Program

 Excerpt from the February, 2002 OBJS Monthly Progress Report from the DARPA
UltraLog Program.

Abstract: Describes demonstrations of three kinds of uses of ProbeMeister within the
UltraLog program for Red Teaming, distributed stress injection and data collection, and
distributed debugging of a messaging subsystem.

Excerpt from February 2003 MsgLog Progress Report

To the DARPA UltraLog Program

Progress. In advance of the CDR and our planned meeting there with Mark Greaves, we
prepared three demonstrations of ways in which OBJS' ProbeMeister (PM is a dynamic
software instrumentation tool for Java developed in the DASADA program) could be of
use on the UltraLog program. One demo showed how PM could be used as a Red Team
attack tool, allowing infiltrators to modify agent blackboard contents unbeknownst and
thereby modify the result of planning. Another showed how PM could be used by the
Engineering Test and Assessment teams to inject stresses and monitor defensive actions
without requiring any cooperation from the developers (no Cougaar Events). The third
demonstrated our MsgAudit tool as an example of how to use PM for regression testing
and debugging, even allowing dynamic code insertion and monitoring of the Java,
thereby facilitating debugging control flows that cross the application/JVM boundary and
those that involve multiple JVM's and hosts, as Cougaar does. We showed these demos
to several people at the CDR, including Mark Greaves, Eric Rickard and Manoj
Srivastava, and expect at least SRI, STDC, and Sandia to evaluate PM for use in their
2003 work.

